Abstract

Elastohydrodynamic lubrication (EHL) in point contacts can be numerically solved with various iteration methods, but so far the flow continuity of such solutions has not been explicitly verified. A series of closed regions with the same inlet side boundary is defined, and two treatments to total all flows related to the other boundaries of the closed regions are defined to enable flow-continuity verifications. The multigrid method and the traditional single mesh method with different relaxation configurations are utilized to solve different cases to evaluate computation efficiencies. For the multigrid method, the combination of a pointwise solver together with hybrid-relaxation factors is identified to perform better than other combinations. The single mesh method has inferior degrees of flow continuity than the multigrid method and needs much smaller error control values of pressure to achieve a decent level of flow continuity. Because flow continuity has a physical meaning, its verifications should be routinely included in any self-validation process for any EHL results. Effects of control errors of pressure, mesh sizes, differential schemes, and operating conditions on flow continuities are studied. Then, trends of film thickness with respect to speed are briefly discussed with meshes up to 4097 by 4097.

References

1.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
3.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
,
2003
, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method Part 1: Theory and Validation
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
217
(
4
), pp.
289
304
.
4.
Yang
,
B.
, and
Laursen
,
T. A.
,
2009
, “
A Mortar-Finite Element Approach to Lubricated Contact Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
47–48
), pp.
3656
3669
.
5.
Ahmed
,
S.
,
Goodyer
,
C. E.
, and
Jimack
,
P. K.
,
2014
, “
An Adaptive Finite Element Procedure for Fully-Coupled Point Contact Elastohydrodynamic Lubrication Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
282
, pp.
1
21
.
6.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
7.
Almqvist
,
T.
, and
Larsson
,
R.
,
2002
, “
The Navier-Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
,
35
(
3
), pp.
163
170
.
8.
Hartinger
,
M.
,
Dumont
,
M. L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.
9.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
.
10.
Singh
,
K.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Lorenz
,
S. J.
,
Peterson
,
W.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2021
, “
Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
143
(
9
), p.
091602
.
11.
Scurria
,
L.
,
Tamarozzi
,
T.
,
Voronkov
,
O.
, and
Fauconnier
,
D.
,
2021
, “
Quantitative Analysis of Reynolds and Navier–Stokes Based Modeling Approaches for Isothermal Newtonian EHL
,”
ASME J. Tribol.
,
143
(
12
), p.
121601
.
12.
Zhu
,
D.
, and
Jane Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
13.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.
14.
Jane
,
W.
, and
Zhu
,
D.
,
2019
,
Interfacial Mechanics Theories and Methods for Contact and Lubrication
,
CRC Press
,
Boca Raton, FL
.
15.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.
16.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
ASME J. Tribol.
,
98
(
2
), pp.
223
228
.
17.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II—Ellipticity Parameter Results
,”
ASME J. Tribol.
,
98
(
3
), pp.
375
381
.
18.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Result
,”
ASME J. Tribol.
,
99
(
2
), pp.
264
275
.
19.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV—Starvation Results
,”
ASME J. Tribol.
,
99
(
1
), pp.
15
23
.
20.
Rohde
,
S. M.
, and
Oh
,
K. P.
,
1975
, “
A Unified Treatment of Thick and Thin Film Elastohydrodynamic Problems by Using Higher Order Element Methods
,”
Proc. R. Soc. A
,
343
, pp.
315
331
.
21.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1977
, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
11
(
10
), pp.
1507
1518
.
22.
Tae-Jo
,
P.
, and
Kyung-Woong
,
K.
,
1990
, “
A Numerical Analysis of the Elastohydrodynamic Lubrication of Elliptical Contacts
,”
Wear
,
136
(
2
), pp.
299
312
.
23.
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1981
, “
Inverse Solution of Reynolds’ Equation of Lubrication Under Point-Contact Elastohydrodynamic Conditions
,”
ASME J. Tribol.
,
103
(
4
), pp.
539
546
.
24.
Hou
,
K. P.
,
Zhu
,
D.
, and
Wen
,
S. Z.
,
1987
, “
An Inverse Solution to the Point Contact EHL Problem Under Heavy Loads
,”
ASME J. Tribol.
,
109
(
3
), pp.
432
436
.
25.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic
,”
ASME J. Tribol.
,
100
(
2
), pp.
12
17
.
26.
Harp
,
S. R.
, and
Salant
,
R. F.
,
2001
, “
An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation
,”
ASME J. Tribol.
,
123
(
1
), pp.
134
143
.
27.
Kim
,
T. W.
, and
Cho
,
Y. J.
,
2008
, “
The Flow Factors Considering the Elastic Deformation for the Rough Surface With a Non-Gaussian Height Distribution
,”
Tribol. Trans.
,
51
(
2
), pp.
213
220
.
28.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Effect of Surface Roughness in Point-Contact EHL: Formulas for Film Thickness and Asperity Load
,”
Tribol. Int.
,
82
, pp.
228
244
.
29.
Wang
,
Z.
,
Yu
,
Q.
,
Shen
,
X.
, and
Chen
,
X.
,
2018
, “
A Simple Model for Scuffing Risk Evaluation of Point Contact Under Mixed Lubrication
,”
ASME J. Tribol.
,
140
(
3
), p.
031502
.
30.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
,
1986
, “
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
108
(
4
), pp.
551
556
.
31.
Venner
,
C. H.
,
1991
,
Multilevel Solution of the EHL Line and Point Contact Problems
,
University of Twente
,
Enschede, The Netherlands
.
32.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
, “
Multigrid Techniques: A Fast and Efficient Method for the Numerical Simulation of Elastohydrodynamically Lubricated Point Contact Problems
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
214
(
1
), pp.
43
61
.
33.
Ai
,
X.
,
1993
,
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts with Rough Surfaces by Using Semi-System and Multigrid Methods
,
Northwestern University
,
Evanston, IL
.
34.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multi-Level Methods in Lubrication
,
Elsevier Science
,
New York
.
35.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
(
3
), pp.
481
491
.
36.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
37.
Hu
,
Y. Z.
,
Wang
,
H.
,
Wang
,
W. Z.
, and
Zhu
,
D.
,
2001
, “
Computer Model of Mixed Lubrication in Point Contacts
,”
Tribol. Int.
,
34
(
1
), pp.
65
73
.
38.
Zhu
,
D.
,
2002
, “
Elastohydrodynamic Lubrication in Extended Parameter Ranges—Part I: Speed Effect
,”
Tribol. Trans.
,
45
(
4
), pp.
540
548
.
39.
Zhu
,
D.
,
2002
, “
Elastohydrodynamic Lubrication in Extended Parameter Ranges—Part II: Load Effect
,”
Tribol. Trans.
,
45
(
4
), pp.
549
555
.
40.
Zhu
,
D.
,
2003
, “
Elastohydrodynamic Lubrication in Extended Parameter Ranges—Part III: Ellipticity Effect
,”
Tribol. Trans.
,
46
(
4
), pp.
585
591
.
41.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
481
.
42.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start up: Part I-Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
.
43.
Deolalikar
,
N.
,
Sadeghi
,
F.
, and
Marble
,
S.
,
2008
, “
Numerical Modeling of Mixed Lubrication and Flash Temperature in EHL Elliptical Contacts
,”
ASME J. Tribol.
,
130
(
1
), p.
011004
.
44.
Hartl
,
M.
,
Křupka
,
I.
, and
Zhu
,
D.
,
2006
, “
EHL Film Thickness Behaviour Under High Pressure—Comparison Between Numerical and Experimental Results
,”
IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics
,
Cardiff, UK
,
Sept. 2004
, pp.
217
228
.
45.
Morales-Espejel
,
G. E.
,
Dumont
,
M. L.
,
Lugt
,
P. M.
, and
Olver
,
A. V.
,
2005
, “
A Limiting Solution for the Dependence of Film Thickness on Velocity in EHL Contacts with Very Thin Films
,”
Tribol. Trans.
,
48
(
3
), pp.
317
327
.
46.
Venner
,
C. H.
,
2005
, “
EHL Film Thickness Computations at Low Speeds: Risk of Artificial Trends as a Result of Poor Accuracy and Implications for Mixed Lubrication Modelling
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
219
(
4
), pp.
285
290
.
47.
Zhu
,
D.
,
2007
, “
On Some Aspects of Numerical Solutions of Thin-Film and Mixed Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
221
(
5
), pp.
561
580
.
48.
Pu
,
W.
,
Wang
,
J.
, and
Zhu
,
D.
,
2016
, “
Progressive Mesh Densification Method for Numerical Solution of Mixed Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
138
(
2
), p.
021502
.
49.
Liu
,
Y.
,
Wang
,
Q. J.
,
Wang
,
W.
,
Hu
,
Y.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
50.
Liu
,
Y.
,
Wang
,
Q. J.
,
Zhu
,
D.
,
Wang
,
W.
, and
Hu
,
Y.
,
2009
, “
Effects of Differential Scheme and Viscosity Model on Rough-Surface Point-Contact Isothermal EHL
,”
ASME J. Tribol.
,
131
(
4
), pp.
044501
.
51.
Zhu
,
D.
,
Liu
,
Y.
, and
Wang
,
Q.
,
2014
, “
On the Numerical Accuracy of Rough Surface EHL Solution
,”
Tribol. Trans.
,
57
(
4
), pp.
570
580
.
52.
Wang
,
Y.
,
Dorgham
,
A.
,
Liu
,
Y.
,
Wang
,
C.
,
Wilson
,
M. C. T.
,
Neville
,
A.
, and
Azam
,
A.
,
2021
, “
An Assessment of Quantitative Predictions of Deterministic Mixed Lubrication Solvers
,”
ASME J. Tribol.
,
143
(
1
), p.
011601
.
53.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Trans.
,
54
(
3
), pp.
470
496
.
54.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
On the Role of Lubricant Rheology and Piezo-Viscous Properties in Line and Point Contact EHL
,”
Tribol. Int.
,
42
(
11–12
), pp.
1522
1530
.
55.
Liu
,
Y.
,
Wang
,
Q. J.
,
Bair
,
S.
, and
Vergne
,
P.
,
2007
, “
A Quantitative Solution for the Full Shear-Thinning EHL Point Contact Problem Including Traction
,”
Tribol. Lett.
,
28
(
2
), pp.
171
181
.
56.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
EHL Circular Contact Film Thickness Correction Factor for Shear-Thinning Fluids
,”
ASME J. Tribol.
,
130
(
4
), p.
041506
.
57.
Katyal
,
P.
, and
Kumar
,
P.
,
2012
, “
Central Film Thickness Formula for Shear Thinning Lubricants in EHL Point Contacts Under Pure Rolling
,”
Tribol. Int.
,
48
, pp.
113
121
.
58.
Wang
,
W.
,
Li
,
S.
,
Shen
,
D.
,
Zhang
,
S.
, and
Hu
,
Y. Z.
,
2012
, “
A Mixed Lubrication Model With Consideration of Starvation and Interasperity Cavitations
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
226
(
12
), pp.
1023
1038
.
59.
Pu
,
W.
,
Zhu
,
D.
, and
Wang
,
J.
,
2018
, “
A Starved Mixed Elastohydrodynamic Lubrication Model for the Prediction of Lubrication Performance, Friction and Flash Temperature With Arbitrary Entrainment Angle
,”
ASME J. Tribol.
,
140
(
3
), p.
031501
.
60.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui
,
M.
,
1990
, “
Variational Formulations and Finite Element Algorithms for Cavitation Problems
,”
ASME J. Tribol.
,
112
(
2
), pp.
398
403
.
61.
Li
,
S.
, and
Masse
,
D.
,
2019
, “
On the Flash Temperature Under the Starved Lubrication Condition of a Line Contact
,”
Tribol. Int.
,
136
, pp.
173
181
.
62.
Liu
,
S.
,
Qiu
,
L.
,
Wang
,
Z.
, and
Chen
,
X.
,
2020
, “
Influences of Iteration Details on Flow Continuities of Numerical Solutions to Isothermal Elastohydrodynamic Lubrication With Micro-Cavitations
,”
ASME J. Tribol.
,
143
(
10
), p.
101601
.
63.
Liu
,
S.
,
Qiu
,
L.
, and
Chen
,
X.
,
2021
, “
In-Depth Exploration of the Multigrid Method to Simulate Elastohydrodynamic Line Lubrications With Smooth, Wavy, and Rough Surfaces
,”
ASME J. Tribol.
,
143
(
12
), p.
121602
.
64.
Wang
,
J.
,
Qu
,
S.
, and
Yang
,
P.
,
2001
, “
Simplified Multigrid Technique for the Numerical Solution to the Steady-State and Transient EHL Line Contacts and the Arbitrary Entrainment EHL Point Contacts
,”
Tribol. Int.
,
34
(
3
), pp.
191
202
.
65.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Fluids Eng.
,
85
(
4
), pp.
601
607
.
66.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
London
.
67.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1
), pp.
101
111
.
You do not currently have access to this content.