Abstract

Utilizing a computational approach, this study quantifies the onset of lubrication starvation for line contacts of rough surfaces operating under typical ranges of automotive gearing applications. The response parameter is selected as the critical film thickness supply, at which starvation initiates. The potential influential parameters (predictors) considered include normal force density, rolling velocity, sliding, lubricant viscosity, and surface roughness amplitude. A non-Newtonian thermal mixed lubrication model is employed to determine the critical lubricant supply under various operating and surface roughness conditions. General linear regression is implemented to reach an easy-to-use equation (R-squared value higher than 97%), facilitating the quantification of starvation dependence on the predictors that are statistically significant.

References

1.
Brewe
,
D. E.
, and
Hamrock
,
B. J.
,
1982
, “
Analysis of Starvation Effects on Hydrodynamic Lubrication in Nonconforming Contacts
,”
ASME J. Lubr. Tech.
,
104
(
3
), pp.
410
417
.
2.
Cann
,
P. M.
,
1999
, “
Starved Grease Lubrication of Rolling Contacts
,”
Tribol. Trans.
,
42
(
4
), pp.
867
873
.
3.
Yoshioka
,
T.
,
Shimizu
,
S.
, and
Shimoda
,
H.
,
2009
, “
A new Rolling Contact Damage of Deep Groove Ball Bearing Under Grease Lubrication
,”
Tribol. Trans.
,
42
(
4
), pp.
867
873
.
4.
Ali
,
F.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2013
, “
Analytical and Experimental Investigation on Friction of Non-Conformal Point Contacts Under Starved Lubrication
,”
Meccanica
,
48
(
3
), pp.
545
553
.
5.
Lewis
,
S. R.
,
Lewis
,
R.
,
Evans
,
G.
, and
Buckley-Johnstone
,
L. E.
,
2014
, “
Assessment of Railway Curve Lubricant Performance Using a Twin-Disc Tester
,”
Wear
,
314
(
1–2
), pp.
205
212
.
6.
Li
,
S.
, and
Masse
,
D.
,
2019
, “
On the Flash Temperature Under the Starved Lubrication Condition of a Line Contact
,”
Tribol. Int.
,
136
, pp.
173
181
.
7.
Querlioz
,
E.
,
Ville
,
F.
,
Lenon
,
H.
, and
Lubrecht
,
T.
,
2007
, “
Experimental Investigations on the Contact Fatigue Life Under Starved Conditions
,”
Tribol. Int.
,
40
(
10–12
), pp.
1619
1626
.
8.
Kolivand
,
A.
,
Li
,
S.
, and
Zhang
,
Q.
,
2021
, “
Modeling on Contact Fatigue Under Starved Lubrication Condition
,”
Meccanica
,
56
(
1
), pp.
211
225
.
9.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.
10.
Handschuh
,
M. J.
,
Li
,
S.
,
Kahraman
,
A.
, and
Talbot
,
D.
,
2020
, “
An Experimental-Theoretical Methodology to Develop Scuffing Limits for Relatively Smooth High Speed Contacts
,”
Tribol. Trans.
,
63
(
5
), pp.
781
795
.
11.
Wedeven
,
L. D.
,
Evans
,
D.
, and
Cameron
,
A.
,
1971
, “
Optical Analysis of Ball Bearing Starvation
,”
ASME J. Lubr. Tech.
,
93
(
3
), pp.
349
363
.
12.
Cann
,
P. M. E.
,
Damiens
,
B.
, and
Lubrecht
,
A. A.
,
2004
, “
The Transition Between Fully Flooded and Starved Regimes in EHL
,”
Tribol. Int.
,
37
(
10
), pp.
859
864
.
13.
Damiens
,
B.
,
Venner
,
C. H.
,
Cann
,
P. M. E.
, and
Lubrecht
,
A. A.
,
2004
, “
Starved Lubrication of Elliptical EHD Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
105
111
.
14.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part IV, Starvation Results
,”
ASME J. Lubr. Tech.
,
99
(
1
), pp.
15
23
.
15.
Chevalier
,
F.
,
Lubrecht
,
A. A.
,
Cann
,
P. M. E.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
16.
Yang
,
P.
,
Wang
,
J.
, and
Kaneta
,
M.
,
2006
, “
Thermal and non-Newtonian Numerical Analyses for Starved EHL Line Contacts
,”
ASME J. Tribol.
,
128
(
2
), pp.
282
290
.
17.
Dumont
,
M. L.
,
Lugt
,
P. M.
, and
Tripp
,
J. H.
,
2002
, “
Surface Feature Effects in Starved Circular EHL Contacts
,”
ASME J. Tribol.
,
124
(
2
), pp.
358
366
.
18.
Pu
,
W.
,
Zhu
,
D.
, and
Wang
,
J.
,
2018
, “
A Starved Mixed Elastohydrodynamic Lubrication Model for the Prediction of Lubrication Performance, Friction and Flash Temperature with Arbitrary Entrainment Angle
,”
ASME J. Tribol.
,
140
(
3
), p.
031501
.
19.
Zhu
,
D.
, and
Wang
,
J.
,
2013
, “
Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness
,”
ASME J. Tribol.
,
135
(
3
), p.
031501
.
20.
Li
,
S.
,
2013
, “
Influence of Surface Roughness lay Directionality on Scuffing Failure of Lubricated Point Contacts
,”
ASME J. Tribol.
,
135
(
4
), p.
041502
.
21.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Tech.
,
103
(
3
), pp.
350
354
.
22.
Li
,
S.
, and
Kahraman
,
A.
,
2009
, “
A Mixed EHL Model with Asymmetric Integrated Control Volume Discretization
,”
Tribol. Int.
,
42
(
8
), pp.
1163
1172
.
23.
Li
,
S.
, and
Kolivand
,
A.
,
2020
, “
On the Dynamics of a Lubricated Roller Contact
,”
Mech. Mach. Theory
,
153
, p.
103959
.
24.
Johnson
,
K. J.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
25.
Li
,
S.
, and
Anisetti
,
A.
,
2016
, “
On the Flash Temperature of Gear Contact Under the Tribo-Dynamic Condition
,”
Tribol. Int.
,
97
, pp.
6
13
.
26.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication. Part I: Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.
27.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
(
4
), pp.
554
563
.
28.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.
29.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
.
30.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Micro-pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
.
31.
Svoboda
,
P.
,
Kostal
,
D.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2013
, “
Experimental Study of Starved EHL Contacts Based on Thickness of oil Layer in the Contact Inlet
,”
Tribol. Int.
,
67
, pp.
140
145
.
32.
Hamrock
,
J. B.
,
Schmid
,
R. S.
, and
Jacobson
,
O. B.
,
2004
,
Fundamentals of Fluid Film Lubrication
, 2nd ed.,
Marcel Dekker Inc
,
New York
.
33.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Method to Derive Friction and Rolling Power Loss Formulae for Mixed Elastohydrodynamic Lubrication
,”
J. Adv. Mech. Des. Syst. Manuf.
,
5
(
4
), pp.
252
263
.
You do not currently have access to this content.