Abstract

The micro-surface asperity scale of grinding metal parts is within several microns. When two grinding surfaces are in contact, the unevenness of the plastic deformation of the asperities at the micro-scale leads to greater plastic hardening strength of the material. The results of the nano-indentation experiment conducted in this paper confirmed this phenomenon. Based on conventional mechanism-based strain gradient (CMSG) plasticity theory, the micro-scale plastic constitutive equation of materials is given and then is verified by the nano-indentation experiment. Finite element software abaqus and the user-defined element (UEL) subroutine are used to build three-dimensional rough surface elastoplastic contact models. By calculating the grinding rough surface contact in the macro-scale constitutive model based on J2 theory and in the CMSG plasticity constitutive model, the influence law of plastic micro-scale effect on contact performance is obtained.

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond.
,
295
(
1442
), pp.
300
319
.
2.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
3.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
4.
Etsion
,
I.
, and
Kogut
,
L.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
5.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
6.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Li
,
L.
,
2020
, “
A Reconstruction and Contact Analysis Method of Three-Dimensional Rough Surface Based on Ellipsoidal Asperity
,”
ASME J. Tribol.
,
142
(
4
), p.
041502
.
7.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. A
,
243
(
1233
), pp.
190
205
.
8.
Jackson
,
R. L.
, and
Streator
,
J. L.
,
2006
, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
,
261
(
11
), pp.
1337
1347
.
9.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
,
118
(
1
), pp.
33
42
.
10.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
11.
Jourani
,
A.
,
2015
, “
A New Three-Dimensional Numerical Model of Rough Contact: Influence of Mode of Surface Deformation on Real Area of Contact and Pressure Distribution
,”
ASME J. Tribol.
,
137
(
1
), p.
011401
.
12.
Bowden
,
F. P.
,
Tabor
,
D. F.
, and
Palmer
,
F.
,
1951
, “
The Friction and Lubrication of Solids
,”
Am. J. Phys.
,
19
(
7
), p.
428
429
.
13.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
.
14.
An
,
B.
,
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Deterministic Elastic-Plastic Modelling of Rough Surface Contact Including Spectral Interpolation and Comparison to Theoretical Models
,”
Tribol. Int.
,
135
(
1
), pp.
246
258
.
15.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metal. Mater.
,
42
(
2
), pp.
475
487
.
16.
Stölken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.
17.
Mcelhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
,
13
(
5
), pp.
1300
1306
.
18.
Song
,
H.
,
Van der Giessen
,
E.
, and
Liu
,
X.
,
2016
, “
Strain Gradient Plasticity Analysis of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
96
(
1
), pp.
18
28
.
19.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.
20.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
21.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
(
1
), pp.
295
361
.
22.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999b
, “
Mechanism-Based Strain Gradient Crystal Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
23.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
753
782
.
24.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
(
2
), pp.
153
162
.
25.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Alloys
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
26.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
(
1
), pp.
307
324
.
27.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.
28.
Kocks
,
U. F.
,
1970
, “
The Relation Between Polycrystal Deformation and Single-Crystal Deformation
,”
Metall. Mater. Trans.
,
1
(
5
), pp.
1121
1143
.
29.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
30.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
18
(
5
), pp.
875
887
.
31.
Tong
,
W.
,
2015
,
Modeling on the Size Dependent Mechanical Behavior Based on the Strain Gradient Crystal Theory
,
Huazhong University of Science and Technology
,
Wuhan
(in Chinese With English abstract).
32.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
33.
Žugelj
,
B. B.
, and
Kalin
,
M.
,
2017
, “
In-Situ Observations of a Multi-Asperity Real Contact Area on a Submicron Scale
,”
J. Mech. Eng.
,
63
(
6
), pp.
351
362
.
You do not currently have access to this content.