Abstract

This paper presents an overview about particulate wear that occurs in various components of slurry pumps, pipeline systems, and hydraulic turbines due to the mechanical action caused by the flow of solid–liquid mixtures. Three most common wear problems, namely, erosion, erosion–corrosion, and abrasion occur in different industries like thermal and hydro power plants, mining, chemical, and marine industries. Therefore, the efficiency of these industries and power plants highly depends on the wear damages. So, it becomes necessary to govern the wear phenomenon. In this paper, the various properties of particles and target are discussed on which the particulate wear depends. Present overview explains the experimental methods of measuring the particulate wear at in situ and ex situ conditions by using the different types of testers, rigs, and pilot plant test loops. Moreover, the empirical and analytical correlations or models for the prediction of particulate wear in pumps, piping circuits, and hydraulic turbines are also discussed in present literature review. By studying the all possible advantages and disadvantages, the gaps in knowledge of wear prediction methods and models are highlighted. At the end, a “think-model” for the prediction as well as reduction of wear in the various components is presented on the basis of different experimental and computational fluid dynamics (CFD) based simulation work. Further investigations can be carried out to develop the more accurate and flexible models that can be used to predict the particulate wear in a wide range of applications.

References

1.
Parent
,
L. L.
, and
Li
,
D. Y.
,
2013
, “
Wear of Hydrotransport Lines in Athabasca Oil Sands
,”
Wear
,
301
(
1–2
), pp.
477
482
.
2.
Walker
,
C. I.
, and
Robbie
,
P.
,
2013
, “
Comparison of Some Laboratory Wear Tests and Field Wear in Slurry Pumps
,”
Wear
,
302
(
1–2
), pp.
1026
1034
.
3.
Qian
,
Z. D.
,
Wang
,
Y.
,
Guo
,
Z. W.
,
Dong
,
J.
, and
Lu
,
J.
,
2016
, “
Analysis of Silt Abrasion of the Impeller Ring in a Centrifugal Pump With J- Grooves
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
129
(
1
), p.
012021
.
4.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J.
,
2016
, “
Critical Length Scale Controls Adhesive Wear Mechanisms
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
5.
Aiming
,
F.
,
Jinming
,
L.
, and
Ziyun
,
T.
,
1995
, “
Failure Analysis of the Impeller of a Slurry Pump Subjected to Corrosive Wear
,”
Wear
,
183
(
2
), pp.
876
882
.
6.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces
,”
Wear
,
3
(
2
), pp.
87
103
.
7.
Qiu
,
N.
,
Wang
,
L.
,
Wu
,
S.
, and
Likhachev
,
D. S.
,
2015
, “
Research on Cavitation Erosion and Wear Resistance Performance of Coatings
,”
Eng. Fail. Anal.
,
55
, pp.
208
223
.
8.
Wu
,
X.
,
Jing
,
H.
,
Zheng
,
Y.
,
Yao
,
Z.
, and
Ke
,
W.
,
2004
, “
Erosion-Corrosion of Various Oil-Refining Materials in Naphthenic Acid
,”
Wear
,
256
(
1–2
), pp.
133
144
.
9.
Nikas
,
G. K.
,
2017
, “
Modeling Dark and White Layer Formation on Elastohydrodynamically Lubricated Steel Surfaces by Thermomechanical Indentation or Abrasion by Metallic Particles
,”
ASME J. Tribol.
,
137
(
3
), p.
031504
.
10.
Roco
,
M. C.
, and
Addie
,
G. R.
,
1987
, “
Erosion Wear in Slurry Pumps and Pipes
,”
Powder Technol.
,
50
(
1
), pp.
35
46
.
11.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1999
, “
Study of the Parametric Dependence of Erosion Wear for the Parallel Flow of Solid-Liquid Mixtures
,”
Tribol. Int.
,
32
(
5
), pp.
275
282
.
12.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2001
, “
Performance Characteristics of Centrifugal Slurry Pumps
,”
ASME J. Fluid Eng.
,
123
(
2
), pp.
271
280
.
13.
Li
,
X.
, and
,
T.
,
2005
, “
Analysis of Corrosion Failure of Petrochemical Pipe Elbow
,”
J. Cent. South Univ. Technol.
,
12
(
2
), pp.
119
123
.
14.
Lee
,
D. I.
, and
Lim
,
H. C.
,
2009
, “
Erosion-Corrosion Damages of Water-Pump Impeller
,”
Int. J. Automot. Technol.
,
10
(
5
), pp.
629
634
.
15.
Postlethwaite
,
J.
,
Tinker
,
E. B.
, and
Hawrylak
,
M. W.
,
1974
, “
Erosion-Corrosion in Slurry Pipelines
,”
Corrosion
,
30
(
8
), pp.
285
289
.
16.
Singh
,
J.
,
Kumar
,
S.
, and
Singh
,
G.
,
2018
, “
ScienceDirect Taguchi’s Approach for Optimization of Tribo-Resistance Parameters Forss304
,”
Mater. Today Proc.
,
5
(
2
), pp.
5031
5038
.
17.
Linak
,
W. P.
,
Miller
,
C. A.
,
Seames
,
W. S.
, and
Wendt
,
J. O. L.
,
2002
, “
On Trimodal Particle Size Distributions in Fly Ash From Pulverized-Coal Combustion
,”
Proceed. Comb. Ins.
,
29
(
1
), pp.
441
447
.
18.
Liu
,
S. W.
,
Wang
,
W. Z.
, and
Liu
,
C. J.
,
2017
, “
Case Studies in Engineering Failure Analysis Failure Analysis of the Boiler Water-Wall Tube
,”
Case Stud. Eng. Fail. Anal.
,
9
, pp.
35
39
.
19.
Mudgal
,
D.
,
Ahuja
,
L.
,
Bhatia
,
D.
,
Singh
,
S.
, and
Prakash
,
S.
,
2016
, “
High Temperature Corrosion Behaviour of Superalloys Under Actual Waste Incinerator Environment
,”
Eng. Fail. Anal.
,
63
, pp.
160
171
.
20.
Singh
,
J. P.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2017
, “
Head Loss Investigations Inside 90° Pipe Bend for Conveying of Fine Coal–Water Slurry Suspension
,”
Int. J. Coal Prep. Util.
,
40
(
11
), pp.
790
806
.
21.
Li
,
Z. M.
,
Sun
,
F. Z.
,
Ma
,
L.
,
Wei
,
W.
, and
Li
,
F.
,
2016
, “
Low-Pressure Economizer Increases Fly Ash Collection Efficiency in ESP
,”
Appl. Therm. Eng.
,
93
, pp.
509
517
.
22.
Verma
,
S. K.
,
Bhadauria
,
S. S.
, and
Akhtar
,
S.
,
2014
, “
Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures
,”
Sci. World J.
,
2014
, p.
957904
.
23.
Song
,
H. W.
, and
Saraswathy
,
V.
,
2007
, “
Corrosion Monitoring of Reinforced Concrete Structures—A Review
,”
Int. J. Electrochem. Sci.
,
2
(
1
), pp.
1
28
.
24.
Peterson
,
J. R.
,
Bangaru
,
N. R.
,
Antram
,
R. L.
,
Christopher
,
J. F.
,
Thirumalai
,
N. S.
,
Chun
,
C.
, and
Lendvai-Lintner
,
E.
,
2008
, “
Erosion Resistant Cermet Linings for Oil & Gas Exploration, Refining and Petrochemical Processing Applications
,”
1
(
19
), p. US 2008/0003125 A1.
25.
Rabinovich
,
E.
, and
Kalman
,
H.
,
2011
, “
Threshold Velocities of Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review
,”
Rev. Chem. Eng.
,
27
(
5–6
), pp.
215
239
.
26.
Szala
,
M.
, and
Łukasik
,
D.
,
2016
, “
Cavitation Wear of Pump Impellers
,”
J. Technol. Exploit. Mech. Eng.
,
2
(
1
), pp.
40
44
.
27.
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Viscosity and Particle Size on the Erosion Damage Caused by Solid Particles
,”
Proceedings of the FEDSM2014
,
Chicago, IL
, pp.
1
10
.
28.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Karimi
,
S.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
Improved CFD Modeling and Validation of Erosion Damage Due to Fine Sand Particles
,”
Wear
,
338–339
, pp.
339
350
.
29.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows Due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.
30.
Chávez
,
J. C.
,
Valencia
,
J. A.
,
Jaramillo
,
G. A.
,
Coronado
,
J. J.
, and
Rodríguez
,
S. A.
,
2015
, “
Failure Analysis of a Pelton Impeller
,”
Eng. Fail. Anal.
,
48
, pp.
297
307
.
31.
Llewellyn
,
R. J.
,
Yick
,
S. K.
, and
Dolman
,
K. F.
,
2004
, “
Scouring Erosion Resistance of Metallic Materials Used in Slurry Pump Service
,”
Wear
,
256
(
6
), pp.
592
599
.
32.
Kusmono
, and
Khasani
,
2017
, “
Analysis of a Failed Pipe Elbow in Geothermal Production Facility
,”
Case Stud. Eng. Fail. Anal.
,
9
, pp.
71
77
.
33.
Rajahram
,
S. S.
,
Harvey
,
T. J.
, and
Wood
,
R. J. K.
,
2009
, “
Erosion-Corrosion Resistance of Engineering Materials in Various Test Conditions
,”
Wear
,
267
(
1–4
), pp.
244
254
.
34.
Chitrakar
,
S.
,
Neopane
,
H. P.
, and
Dahlhaug
,
O. G.
,
2016
, “
Study of the Simultaneous Effects of Secondary Flow and Sediment Erosion in Francis Turbines
,”
Renew. Energy
,
97
, pp.
881
891
.
35.
Levy
,
A. V.
,
1996
,
Solid Particle Erosion and Erosion-Corrosion of Materials
,
ASM International
,
OH
.
36.
Bellman
,
R.
, and
Levy
,
A.
,
1981
, “
Erosion Mechanism in Ductile Metals
,”
Wear
,
70
(
1
), pp.
1
27
.
37.
Wang
,
Y. F.
, and
Yang
,
Z. G.
,
2008
, “
Finite Element Model of Erosive Wear on Ductile and Brittle Materials
,”
Wear
,
265
(
5–6
), pp.
871
878
.
38.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
.
39.
Sundararajan
,
G.
,
Roy
,
M.
, and
Venkataraman
,
B.
,
1990
, “
Erosion Efficiency-a New Parameter to Characterize the Dominant Erosion Micromechanism
,”
Wear
,
140
(
2
), pp.
369
381
.
40.
Clark
,
H. M. I.
, and
Wong
,
K. K.
,
1995
, “
Impact Angle, Particle Energy and Mass Loss in Erosion by Dilute Slurries
,”
Wear
,
186–187
(
Part 2
), pp.
454
464
.
41.
Grewal
,
H. S.
,
Agrawal
,
A.
, and
Singh
,
H.
,
2013
, “
Design and Development of High-Velocity Slurry Erosion Test Rig Using CFD
,”
J. Mater. Eng. Perform.
,
22
(
1
), pp.
152
161
.
42.
Singh
,
J.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2019
, “
Study on Role of Particle Shape in Erosion Wear of Austenitic Steel Using Image Processing Analysis Technique
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
5
), pp.
712
725
.
43.
Elkholy
,
A.
,
1983
, “
Prediction of Abrasion Wear for Slurry Pump Materials
,”
Wear
,
84
(
1
), pp.
39
49
.
44.
Ma
,
L.
,
Huang
,
C.
,
Xie
,
Y.
,
Jiang
,
J.
,
Tufa
,
K. Y.
,
Hui
,
R.
, and
Liu
,
Z. S.
,
2015
, “
Modeling of Erodent Particle Trajectories in Slurry Flow
,”
Wear
,
334–335
, pp.
49
55
.
45.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2008
, “
Slurry Erosion of Ductile Materials Under Normal Impact Condition
,”
Wear
,
264
(
3–4
), pp.
322
330
.
46.
Clark
,
H. M.
, and
Llewellyn
,
R. J.
,
2001
, “
Assessment of the Erosion Resistance of Steels Used for Slurry Handling and Transport in Mineral Processing Applications
,”
Wear
,
250–251
(
1–12
), pp.
32
44
.
47.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
Development of Mechanistic Erosion Equation for Solid Particles
,”
Wear
,
332–333
, pp.
1044
1050
.
48.
Lindgren
,
M.
, and
Perolainen
,
J.
,
2014
, “
Slurry Pot Investigation of the Influence of Erodent Characteristics on the Erosion Resistance of Austenitic and Duplex Stainless Steel Grades
,”
Wear
,
319
(
1–2
), pp.
38
48
.
49.
Singh
,
M.
,
Kumar
,
S.
,
Kumar
,
S.
,
Nandan
,
G.
, and
Gupta
,
M.
,
2018
, “
Characterization of Iron-Ore Suspension at In-Situ Conditions
,”
Mater. Today Proc.
,
5
(
9
), pp.
17845
17851
.
50.
Singh
,
J.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2018
, “
Erosion Tribo-Performance of HVOF Deposited Stellite-6 and Colmonoy-88 Micron Layers on SS-316L
,”
Tribol. Int.
,
147
, p.
105262
.
51.
Singh
,
J.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2017
, “
Tribological Analysis of WC–10Co–4Cr and Ni–20Cr2O3 Coating on Stainless Steel 304
,”
Wear
,
376–377
, pp.
1105
1111
.
52.
Singh
,
J.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2018
, “
Optimization of Erosion Wear Influencing Parameters of HVOF Sprayed Pumping Material for Coal-Water Slurry
,”
Mater. Today Proc.
,
5
(
11
), pp.
23789
23795
.
53.
Bouwman
,
A. M.
,
Bosma
,
J. C.
,
Vonk
,
P.
,
Wesselingh
,
J. A.
, and
Frijlink
,
H. W.
,
2004
, “
Which Shape Factor(s) Best Describe Granules?
,”
Powder Technol.
,
146
(
1–2
), pp.
66
72
.
54.
Sapate
,
S. G.
,
Rathod
,
A.
, and
Khatirkar
,
R. K.
,
2012
, “
Shape Factor Analysis of Abrasive Particles Used in Slurry Abrasion Testing
,”
Int. J. Mech. Ind. Eng.
,
3
(
2
), pp.
127
131
.
55.
Levy
,
A. V.
, and
Chik
,
P.
,
1983
, “
The Effects of Erodent Composition and Shape on the Erosion of Steel
,”
Wear
,
89
(
2
), pp.
151
162
.
56.
Hawthorne
,
H. M.
,
Xie
,
Y.
, and
Yick
,
S. K.
,
2002
, “
A Study of Single Particle-Target Surface Interactions Along a Specimen in the Coriolis Slurry Erosion Tester
,”
Wear
,
253
(
3–4
), pp.
403
410
.
57.
Ahlert
,
K. R.
,
1994
, “
Effects of Particle Impingement Angle and Surface Waiting on Solid Particle Erosion of AISI 1018 Steel
,” Thesis,
University of Tulsa
,
Tulsa, OK
.
58.
Bahadur
,
S.
, and
Badruddin
,
R.
,
1990
, “
Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion
,”
Wear
,
138
(
1–2
), pp.
189
208
.
59.
Zou
,
R. P.
, and
Yu
,
A. B.
,
1996
, “
Evaluation of the Packing Characteristics of Mono-Sized Non-Spherical Particles
,”
Powder Technol.
,
88
(
1
), pp.
71
79
.
60.
Heilbronner
,
R.
, and
Keulen
,
N.
,
2006
, “
Grain Size and Grain Shape Analysis of Fault Rocks
,”
Tectonophysics
,
427
(
1–4
), pp.
199
216
.
61.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.
62.
Woldman
,
M.
,
van der Heide
,
E.
,
Schipper
,
D. J.
,
Tinga
,
T.
, and
Masen
,
M. A.
,
2012
, “
Investigating the Influence of Sand Particle Properties on Abrasive Wear Behaviour
,”
Wear
,
294–295
, pp.
419
426
.
63.
Thakur
,
L.
,
Arora
,
N.
,
Jayaganthan
,
R.
, and
Sood
,
R.
,
2011
, “
An Investigation on Erosion Behavior of HVOF Sprayed WC-CoCr Coatings
,”
Appl. Surf. Sci.
,
258
(
3
), pp.
1225
1234
.
64.
Walker
,
C. I.
, and
Hambe
,
M.
,
2015
, “
Influence of Particle Shape on Slurry Wear of White Iron
,”
Wear
,
332–333
, pp.
1021
1027
.
65.
Stack
,
M. M.
, and
Pungwiwat
,
N.
,
1999
, “
Slurry Erosion of Metallics, Polymers, and Ceramics: Particle Size Effects
,”
Mater. Sci. Technol.
,
15
(
3
), pp.
337
344
.
66.
Gupta
,
R.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1995
, “
Study on the Uneven Wear Rate in a Slurry Pipeline on the Basis of Measurements in a Pot Tester
,”
Wear
,
184
(
4
), pp.
169
178
.
67.
Clark
,
H. M. I.
, and
Hartwich
,
R. B.
,
2001
, “
A Re-Examination of the ‘Particle Size Effect’ in Slurry Erosion
,”
Wear
,
248
(
1–2
), pp.
147
161
.
68.
Tilly
,
G. P.
,
1973
, “
A Two Stage Mechanism of Ductile Erosion
,”
Wear
,
23
(
1
), pp.
87
96
.
69.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.
70.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2005
, “
Improvement in the Design of a Pot Tester to Simulate Erosion Wear Due to Solid-Liquid Mixture
,”
Wear
,
259
(
1–6
), pp.
196
202
.
71.
Wang
,
M. H.
,
Huang
,
C.
,
Nandakumar
,
K.
,
Minev
,
P.
,
Luo
,
J.
, and
Chiovelli
,
S.
,
2009
, “
Computational Fluid Dynamics Modelling and Experimental Study of Erosion in Slurry Jet Flows
,”
Int. J. Comut. Fluid Dyn.
,
23
(
2
), pp.
155
172
.
72.
Padhy
,
M. K.
, and
Saini
,
R. P.
,
2009
, “
Effect of Size and Concentration of Silt Particles on Erosion of Pelton Turbine Buckets
,”
Energy
,
34
(
10
), pp.
1477
1483
.
73.
Patil
,
M. S.
,
Deore
,
E. R.
,
Jahagirdar
,
R. S.
, and
Patil
,
S. V.
,
2011
, “
Study of the Parameters Affecting Erosion Wear of Ductile Material in Solid-Liquid Mixture
,”
Proc. World Congr. Eng. (WCE) 2011
,
London, UK
.
74.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2011
, “
Development of Correlations for Predicting the Slurry Erosion of Ductile Materials
,”
ASME J. Tribol.
,
133
(
3
), p.
031603
.
75.
Kumar
,
K.
,
Kumar
,
S.
,
Singh
,
G.
,
Singh
,
J. P.
, and
Singh
,
J.
,
2017
, “
Erosion Wear Investigation of HVOF Sprayed WC-10 Co 4 Cr Coating on Slurry Pipeline Materials
,”
Coatings
,
7
(
4
), pp.
1
11
.
76.
Wiederhorn
,
S. M.
, and
Hockey
,
B. J.
,
1983
, “
Effect of Material Parameters on the Erosion Resistance of Brittle Materials
,”
J. Mater. Sci.
,
18
(
3
), pp.
766
780
.
77.
Wada
,
S.
, and
Watanabe
,
N.
,
1987
, “
Solid Particle Erosion of Brittle Materials (Part 3)
,”
J. Ceram. Assoc. Japan
,
95
(
1102
), pp.
573
578
.
78.
Singh
,
J.
,
2019
, “
Investigation on Slurry Erosion of Different Pumping Materials and Coatings
,”
Thapar Institute of Engineering and Technology
,
Patiala, India
.
79.
Verma
,
P.
,
Kumar
,
S.
,
Lal
,
K.
,
Pal Singh
,
J.
, and
Prasad
,
S. B.
,
2018
, “
Prediction of Pressure Drop for the Flow of Zinc Ore-Water Suspension in Horizontal Pipeline
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
455
, p.
012135
.
80.
Ballesteros
,
D. Y. P.
,
Mendez Camacho
,
Y. E.
, and
Barreto Hernandez
,
L. V.
,
2016
, “
Evaluation of the Synergistic Effect of Erosion-Corrosion on AISI 4330 Steel in Saline-Sand Multiphase Flow by Electrochemical and Gravimetric Techniques
,”
Int. J. Electrochem.
,
2016
, p.
1831654
.
81.
Shehadeh
,
M.
,
Anany
,
M.
,
Saqr
,
K. M.
, and
Hassan
,
I.
,
2014
, “
Experimental Investigation of Erosion-Corrosion Phenomena in a Steel Fitting Due to Plain and Slurry Seawater Flow
,”
Int. J. Mech. Mater. Eng.
,
9
, p.
22
.
82.
Karafyllias
,
G.
,
Galloway
,
A.
, and
Humphries
,
E.
,
2019
, “
The Effect of Low PH in Erosion-Corrosion Resistance of High Chromium Cast Irons and Stainless Steels
,”
Wear
,
420–421
, pp.
79
86
.
83.
Yu
,
Z.
,
Chen
,
M.
,
Li
,
F.
,
Zhu
,
S.
, and
Wang
,
F.
,
2020
, “
Synergistic Effect of Corrosion and Wear of the 316 Stainless Steel in Molten Zinc Alloy at 460 °C
,”
Corros. Sci.
,
165
, p.
108411
.
84.
Stack
,
M. M.
,
Jana
,
B. D.
, and
Abdelrahman
,
S. M.
,
2011
, Models and Mechanisms of Erosion–Corrosion in Metals.
85.
Prasad
,
B. K.
,
Jha
,
A. K.
,
Modi
,
O. P.
, and
Yegneswaran
,
A. H.
,
2004
, “
Effect of Sand Concentration in the Medium and Travel Distance and Speed on the Slurry Wear Response of a Zinc-Based Alloy Alumina Particle Composite
,”
Tribol. Lett.
,
17
(
2
), pp.
301
309
.
86.
Singh
,
J.
,
2019
, “
Analysis on Suitability of HVOF Sprayed Ni-20Al, Ni-20Cr and Al-20Ti Coatings in Coal-Ash Slurry Conditions Using Artificial Neural Network Model
,”
Ind. Lubr. Tribol.
,
71
(
7
), pp.
972
982
.
87.
Dasgupta
,
R.
,
Prasad
,
B. K.
,
Jha
,
A. K.
,
Modi
,
O. P.
, and
Yegneswaran
,
A. H.
,
1998
, “
Effects of Sand Concentration on Slurry Erosion of Steels
,”
Mater. Transections
,
39
(
12
), pp.
1185
1190
.
88.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Agrawal
,
A.
,
Singh
,
H.
, and
Mukherjee
,
S.
,
2013
, “
Slurry Erosion of Thermal Spray Coatings: Effect of Sand Concentration
,”
Procedia Eng.
,
68
, pp.
484
490
.
89.
Chandel
,
S.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2012
, “
Experimental Study of Erosion Wear in a Centrifugal Slurry Pump Using Coriolis Wear Test Rig
,”
Part. Sci. Technol.
,
30
(
2
), pp.
179
195
.
90.
Hawthorne
,
H. M.
,
2002
, “
Some Coriolis Slurry Erosion Test Developments
,”
Tribol. Int.
,
35
(
10
), pp.
625
630
.
91.
Kleis
,
I.
, and
Kulu
,
P.
,
2008
,
Solid Particle Erosion: Occurrence, Prediction and Control
,
Springer-Verlag London Limited
,
London, UK
.
92.
Bong
,
E.
,
2013
, “
Solid-Liquid Mass Transfer in Agitated Vessels With High Solids Concentration
,” (
March
), p.
144
.
93.
Bong
,
E. Y.
,
Eshtiaghi
,
N.
,
Wu
,
J.
, and
Parthasarathy
,
R.
,
2015
, “
Optimum Solids Concentration for Solids Suspension and Solid-Liquid Mass Transfer in Agitated Vessels
,”
Chem. Eng. Res. Des.
,
100
, pp.
148
156
.
94.
Dabirian
,
R.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2016
, “
Critical Sand Deposition Velocity for Gas-Liquid Stratified Flow in Horizontal Pipes
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
527
537
.
95.
Bartosik
,
A.
,
2010
, “
Influence of Coarse-Dispersive Solid Phase on the ‘Particles-Wall’ Shear Stress in Turbulent Slurry Flow With High Solid Concentration
,”
Arch. Mech. Eng.
,
57
(
1
), pp.
45
68
.
96.
Turenne
,
S.
,
Châtigny
,
Y.
,
Simard
,
D.
,
Caron
,
S.
, and
Masounave
,
J.
,
1990
, “
The Effect of Abrasive Particle Size on the Slurry Erosion Resistance of Particulate-Reinforced Aluminium Alloy
,”
Wear
,
141
(
1
), pp.
147
158
.
97.
Rajahram
,
S. S.
,
Harvey
,
T. J.
, and
Wood
,
R. J. K.
,
2011
, “
Electrochemical Investigation of Erosion-Corrosion Using a Slurry Pot Erosion Tester
,”
Tribol. Int.
,
44
(
3
), pp.
232
240
.
98.
Kumar
,
R.
,
Bhandari
,
S.
, and
Goyal
,
A.
,
2018
, “
Performance Analysis of CA6NM Hydro-Turbine Steel Under Accelerated Conditions by Using an Indigenously Developed Slurry Erosion Tester
,”
Trans. Indian Inst. Met.
,
71
(
3
), pp.
753
761
.
99.
Deng
,
T.
,
Li
,
J.
,
Chaudhry
,
A. R.
,
Patel
,
M.
,
Hutchings
,
I.
, and
Bradley
,
M. S. A.
,
2005
, “
Comparison Between Weight Loss of Bends in a Pneumatic Conveyor and Erosion Rate Obtained in a Centrifugal Erosion Tester for the Same Materials
,”
Wear
,
258
, pp.
402
411
.
100.
Divakar
,
M.
,
Agarwal
,
V. K.
, and
Singh
,
S. N.
,
2005
, “
Effect of the Material Surface Hardness on the Erosion of AISI316
,”
Wear
,
259
(
1–6
), pp.
110
117
.
101.
Islam
,
M. A.
,
Alam
,
T.
,
Farhat
,
Z. N.
,
Mohamed
,
A.
, and
Alfantazi
,
A.
,
2015
, “
Effect of Microstructure on the Erosion Behavior of Carbon Steel
,”
Wear
,
332–333
, pp.
1080
1089
.
102.
Manisekaran
,
T.
,
Kamaraj
,
M.
,
Sharrif
,
S. M.
, and
Joshi
,
S. V.
,
2007
, “
Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size
,”
J. Mater. Eng. Perform.
,
16
(
5
), pp.
567
572
.
103.
Singh
,
J.
, and
Singh
,
S.
,
2021
, “
Neural Network Prediction of Slurry Erosion of Heavy-Duty Pump Impeller/Casing Materials 18Cr-8Ni, 16Cr-10Ni-2Mo, Super Duplex 24Cr-6Ni-3Mo-N, and Grey Cast Iron
,”
Wear
.
104.
Singh
,
J.
, and
Singh
,
J. P.
,
2021
, “
Performance Analysis of Erosion Resistant Mo2C Reinforced WC-CoCr Coating for Pump Impeller with Taguchi’s Method
,”
Ind. Lubr. Tribol
.
105.
Singh
,
J.
,
2021
, “
Tribo-Performance Analysis of HVOF Sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L Steel Using DOE-ANN Methodology
,”
Ind. Lubr. Tribol
.
106.
Wood
,
R. J. K.
, and
Wheeler
,
D. W.
,
1998
, “
Design and Performance of a High Velocity Air-Sand Jet Impingement Erosion Facility
,”
Wear
,
220
(
2
), pp.
95
112
.
107.
Haugen
,
K.
,
Kvernvold
,
O.
,
Ronold
,
A.
, and
Sandberg
,
R.
,
1995
, “
Sand Erosion of Wear-Resistant Materials: Erosion in Choke Valves
,”
Wear
,
186–187
, pp.
179
188
.
108.
Feng
,
Z.
,
Tzeng
,
Y.
, and
Field
,
J. E.
,
1992
, “
Solid Particle Impact of CVD Diamond Films
,”
Thin Solid Films
,
212
(
1–2
), pp.
35
42
.
109.
Faddick
,
R. R.
,
1982
, “
Wear in Pipes: A Short Course on Slurry Pipelining Technology
,”
Proc. Hydrotransport
,
vol. 8
.
Conf., BHRA, Cranfield, UK
.
110.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
111.
Gadhikar
,
A. A.
,
Sharma
,
A.
,
Goel
,
D. B.
, and
Sharma
,
C. P.
,
2011
, “
Fabrication and Testing of Slurry Pot Erosion Tester
,”
Trans. Indian Inst. Met.
,
64
(
4–5
), pp.
493
500
.
112.
Burstein
,
G. T.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion-Corrosion of 304L Stainless Steel
,”
Wear
,
240
(
1–2
), pp.
80
94
.
113.
Tian
,
H. H.
,
Addie
,
G. R.
, and
Visintainer
,
R. J.
,
2009
, “
Erosion-Corrosion Performance of High-Cr Cast Iron Alloys in Flowing Liquid-Solid Slurries
,”
Wear
,
267
(
11
), pp.
2039
2047
.
114.
Krishnamurthy
,
N.
,
Murali
,
M. S.
,
Venkataraman
,
B.
, and
Mukunda
,
P. G.
,
2012
, “
Characterization and Solid Particle Erosion Behavior of Plasma Sprayed Alumina and Calcia-Stabilized Zirconia Coatings on Al-6061 Substrate
,”
Wear
,
274–275
, pp.
15
27
.
115.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2006
,
Engineering Tribology
,
Butterworth-Heinemann, Elsevier
,
Burlington, UK
.
116.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.
117.
Cai
,
F.
,
Huang
,
X.
, and
Yang
,
Q.
,
2015
, “
Mechanical Properties, Sliding Wear and Solid Particle Erosion Behaviors of Plasma Enhanced Magnetron Sputtering CrSiCN Coating Systems
,”
Wear
,
324–325
, pp.
27
35
.
118.
Wensink
,
H.
, and
Elwenspoek
,
M. C.
,
2002
, “
A Closer Look at the Ductile-Brittle Transition in Solid Particle Erosion
,”
Wear
,
253
(
9–10
), pp.
1035
1043
.
119.
Stack
,
M. M.
, and
El-badia
,
T. M. A.
,
2008
, “
Some Comments on Mapping the Combined Effects of Slurry Concentration, Impact Velocity and Electrochemical Potential on the Erosion—Corrosion of WC/Co—Cr Coatings
,”
Wear
,
264
(
9–10
), pp.
826
837
.
120.
Evans
,
A. G.
,
Gulden
,
M. E.
, and
Rosenblatt
,
M.
,
1978
, “
Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime
,”
Proc R Soc London Ser A
,
361
(
1706
), pp.
343
365
.
121.
Reddy
,
A. V.
, and
Sundrarajan
,
G.
,
1986
, “
Erosion Behaviour of Ductile Materials With a Spherical Non-Friable Erodent
,”
Wear
,
111
, pp.
313
323
.
122.
Levy
,
A.
, and
Hickey
,
G.
,
2010
, Surface Degradation of Metals in Simulated Synthetic Fuels Plant Environments, CA.
123.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Clarendon Press
,
Oxford
.
124.
Sheldon
,
G. L.
, and
Kanhere
,
A.
,
1972
, “
An Investigation of Impingement Erosion Using Single Particles
,”
Wear
,
21
(
1
), pp.
195
209
.
125.
Jennings
,
W. H.
,
Manning
,
J. C. R.
, and
Head
,
W. J.
,
1975
, A Mechanistic Model for Prediction of Ductile Erosion, Raleigh, NC.
126.
Hutchings
,
I.
,
Winter
,
R.
, and
Field
,
J.
,
1976
, “
Solid Particle Erosion of Metals: The Removal of Surface Material by Spherical Projectiles
,”
Proc. R. Soc. London A Math. Phys. Sci.
,
348
(
1654
), pp.
379
392
.
127.
Hutchings
,
I. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
(
3
), pp.
269
281
.
128.
Ojala
,
N.
,
Valtonen
,
K.
,
Antikainen
,
A.
,
Kemppainen
,
A.
,
Minkkinen
,
J.
,
Oja
,
O.
, and
Kuokkala
,
V.
,
2016
, “
Wear Performance of Quenched Wear Resistant Steels in Abrasive Slurry Erosion
,”
Wear
,
354–355
, pp.
21
31
.
129.
Alam
,
T.
,
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2016
, “
Slurry Erosion of Pipeline Steel: Effect of Velocity and Microstructure
,”
ASME J. Tribol.
,
138
(
2
), p.
021604
.
130.
Hu
,
Y.
,
Zuo
,
X.
,
Li
,
R.
, and
Zhang
,
Z.
,
2012
, “
Effect of Initial Microstructures on the Properties of Ferrite-Martensite Dual-Phase Pipeline Steels with Strain-Based Design
,”
Mater. Res.
,
15
(
2
), pp.
317
322
.
131.
Levy
,
A. V.
,
1981
, “
The Solid Particle Erosion Behavior of Steel as a Function of Microstructure
,”
Wear
,
68
(
3
), pp.
269
287
.
132.
Xu
,
X.
,
Van der Zwaag
,
S.
, and
Xu
,
W.
,
2016
, “
The Effect of Ferrite-Martensite Morphology on the Scratch and Abrasive Wear Behaviour of a Dual Phase Construction Steel
,”
Wear
,
348–349
, pp.
148
157
.
133.
Li
,
R.
,
Zuo
,
X.
,
Hu
,
Y.
,
Wang
,
Z.
, and
Hu
,
D.
,
2011
, “
Microstructure and Properties of Pipeline Steel With a Ferrite/Martensite Dual-Phase Microstructure
,”
Mater. Charact.
,
62
(
8
), pp.
801
806
.
134.
Sharma
,
A.
,
Kumar
,
A.
, and
Tyagi
,
R.
,
2015
, “
Erosive Wear Analysis of Medium Carbon Dual Phase Steel Under Dry Ambient Condition
,”
Wear
,
334–335
, pp.
91
98
.
135.
Modi
,
O. P.
,
Pandit
,
P.
,
Mondal
,
D. P.
,
Prasad
,
B. K.
,
Yegneswaran
,
A. H.
, and
Chrysanthou
,
A.
,
2007
, “
High-Stress Abrasive Wear Response of 0.2% Carbon Dual Phase Steel: Effects of Microstructural Features and Experimental Conditions
,”
Mater. Sci. Eng. A
,
458
(
1–2
), pp.
303
311
.
136.
Bayram
,
A.
, and
Uğuz
,
A.
,
2001
, “
Effect of Microstructure on the Wear Behaviour of a Dual Phase Steel
,”
Materwiss. Werksttech.
,
32
(
3
), pp.
249
252
.
137.
Lindsley
,
B. A.
, and
Marder
,
A. R.
,
1999
, “
The Effect of Velocity on the Solid Particle Erosion Rate of Alloys
,”
Wear
,
225–229
, pp.
510
516
.
138.
Sooraj
,
V. S.
, and
Radhakrishnan
,
V.
,
2013
, “
Elastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051019
.
139.
Haiko
,
O.
,
Miettunen
,
I.
,
Porter
,
D.
,
Ojala
,
N.
,
Ratia
,
V.
,
Heino
,
V.
, and
Kemppainen
,
A.
,
2017
, “
Effect of Finish Rolling and Quench Stop Temperatures on Impact-Abrasive Wear Resistance of 0.35% Carbon Direct-Quenched Steel
,”
Tribologia
,
35
(
1–2
), pp.
5
21
.
140.
Rodríguez
,
E.
,
Flores
,
M.
,
Pérez
,
A.
,
Mercado-Solis
,
R. D.
,
González
,
R.
,
Rodríguez
,
J.
, and
Valtierra
,
S.
,
2009
, “
Erosive Wear by Silica Sand on AISI H13 and 4140 Steels
,”
Wear
,
267
(
11
), pp.
2109
2115
.
141.
Mukhopadhyay
,
P.
,
Srinivas
,
M.
, and
Roy
,
M.
,
2016
, “
Microstructural Developments During Erosion of Tribological Steels
,”
Mater. Charact.
,
113
, pp.
43
51
.
142.
Ji
,
L. K.
,
Li
,
H. L.
,
Wang
,
H. T.
,
Zhang
,
J. M.
,
Zhao
,
W. Z.
,
Chen
,
H. Y.
,
Li
,
Y.
, and
Chi
,
Q.
,
2014
, “
Influence of Dual-Phase Microstructures on the Properties of High Strength Grade Line Pipes
,”
J. Mater. Eng. Perform.
,
23
(
11
), pp.
3867
3874
.
143.
Rosado
,
D. B.
,
Waele
,
W. D.
, and
Vanderschueren
,
D.
,
2013
, “
Latest Developments in Mechanical Properties and Metallurgical of High Strenght Line Pipes
,”
Sustain. Constr. Des.
,
4
(
1
), pp.
1
10
.
144.
Zuo
,
X.
, and
Zhou
,
Z.
,
2015
, “
Study of Pipeline Steels with Acicular Ferrite Microstructure and Ferrite-Bainite Dual-Phase Microstructure
,”
Mater. Res.
,
18
(
1
), pp.
36
41
.
145.
O’Flynn
,
D. J.
,
Bingley
,
M. S.
,
Bradley
,
M. S. A.
, and
Burnett
,
A. J.
,
2001
, “
A Model to Predict the Solid Particle Erosion Rate of Metals and Its Assessment Using Heat-Treated Steels
,”
Wear
,
248
(
1–2
), pp.
162
177
.
146.
Vuorinen
,
E.
,
Ojala
,
N.
,
Heino
,
V.
,
Rau
,
C.
, and
Gahm
,
C.
,
2016
, “
Erosive and Abrasive Wear Performance of Carbide Free Bainitic Steels—Comparison of Field and Laboratory Experiments
,”
Tribol. Int.
,
98
, pp.
108
115
.
147.
Shipway
,
P. H.
,
Wood
,
S. J.
, and
Dent
,
A. H.
,
1997
, “
The Hardness and Sliding Wear Behaviour of a Bainitic Steel
,”
Wear
,
203–204
, pp.
196
205
.
148.
Wang
,
T. S.
,
Yang
,
J.
,
Shang
,
C. J.
,
Li
,
X. Y.
,
Lv
,
B.
,
Zhang
,
M.
, and
Zhang
,
F. C.
,
2008
, “
Sliding Friction Surface Microstructure and Wear Resistance of 9SiCr Steel With Low-Temperature Austempering Treatment
,”
Surf. Coatings Technol.
,
202
(
16
), pp.
4036
4040
.
149.
Leiro
,
A.
,
Vuorinen
,
E.
,
Sundin
,
K. G.
,
Prakash
,
B.
,
Sourmail
,
T.
,
Smanio
,
V.
,
Caballero
,
F. G.
,
Garcia-Mateo
,
C.
, and
Elvira
,
R.
,
2013
, “
Wear of Nano-Structured Carbide-Free Bainitic Steels Under Dry Rolling-Sliding Conditions
,”
Wear
,
298–299
(
1
), pp.
42
47
.
150.
Rementeria
,
R.
,
García
,
I.
,
Aranda
,
M. M.
, and
Caballero
,
F. G.
,
2015
, “
Reciprocating-Sliding Wear Behavior of Nanostructured and Ultra-Fine High-Silicon Bainitic Steels
,”
Wear
,
338–339
, pp.
202
209
.
151.
Young
,
J. P.
, and
Ruff
,
A. W.
,
1977
, “
Particle Erosion Measurements on Metals
,”
J. Eng. Mater. Technol.
,
99
(
2
), pp.
121
125
.
152.
Levy
,
A.
, and
Man
,
Y. F.
,
1986
, “
The Effect of Temperature on the Erosion-Corrosion of 9Cr-1Mo Steel
,”
Wear
,
111
(
2
), pp.
161
172
.
153.
Hayashi
,
N.
,
Kagimoto
,
Y.
,
Notomi
,
A.
,
Takeda
,
Y.
, and
Kato
,
K.
,
2005
, “
Development of New Testing Method by Centrifugal Erosion Tester at Elevated Temperature
,”
Wear
,
258
(
1–4
), pp.
443
457
.
154.
Smeltzer
,
C. E.
,
Gulden
,
M. E.
, and
Compton
,
W. A.
,
1970
, “
Mechanisms of Metal Removal by Impacting Dust Particles
,”
ASME J. Fluids Eng. Trans.
,
92
(
3
), pp.
639
652
.
155.
Humphrey
,
J. A. C.
,
1990
, “
Fundamentals of Fluid Motion in Erosion by Solid Particle Impact
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
170
195
.
156.
Sarlin
,
E.
,
Lindgren
,
M.
,
Suihkonen
,
R.
,
Siljander
,
S.
,
Kakkonen
,
M.
, and
Vuorinen
,
J.
,
2015
, “
High-Temperature Slurry Erosion of Vinylester Matrix Composites—The Effect of Test Parameters
,”
Wear
,
328–329
, pp.
488
497
.
157.
Schumacher
,
W. J.
,
1987
,
Ball Mill and Hub Test Methods for Slurry Erosion Evaluation of Materials
,
J.
Miller
and
F.
Schmidt
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
5
16
.
158.
Clark
,
H. M. I.
,
2002
, “
Particle Velocity and Size Effects in Laboratory Slurry Erosion Measurements OR … Do You Know What Your Particles Are Doing ?
Tribol. Int.
,
35
(
10
), pp.
617
624
.
159.
Clark
,
H. M. I.
,
1993
, “
Specimen Diameter, Impact Velocity, Erosion Rate and Particle Density in a Slurry Pot Erosion Tester
,”
Wear
,
162–164
, pp.
669
678
.
160.
Kumar
,
A.
,
Sharma
,
A.
, and
Goel
,
S. K.
,
2015
, “
Effect of Heat Treatment on Microstructure, Mechanical Properties and Erosion Resistance of Cast 23-8-N Nitronic Steel
,”
Mater. Sci. Eng. A
,
637
, pp.
56
62
.
161.
Soderberg
,
S.
,
Hogmark
,
S.
,
Engmant
,
U.
, and
Swahnt
,
H.
,
1981
, “
Erosion Classification of Materials Using a Centrifugal Erosion Tester
,”
Tribol. Int.
,
14
(
6
), pp.
333
343
.
162.
Deng
,
T.
,
Bradley
,
M. S. A.
, and
Bingley
,
M. S.
,
2001
, “
An Investigation of Particle Dynamics Within a Centrifugal Accelerator Type Erosion Tester
,”
Wear
,
247
(
1
), pp.
55
65
.
163.
Tuzson
,
J. J.
,
2015
, “
Laboratory Slurry Erosion Tests and Pump Wear Rate Calculations
,”
J. Fluids Eng.
,
106
(
2
), pp.
135
140
.
164.
Tian
,
H. H.
,
Addie
,
G. R.
, and
Barsh
,
E. P.
,
2007
, “
A New Impact Erosion Testing Setup Through Coriolis Approach
,”
Wear
,
263
(
1–6
), pp.
289
294
.
165.
Clark
,
H. M. I.
,
Hawthorne
,
H. M.
, and
Xie
,
Y.
,
1999
, “
Wear Rates and Specific Energies of Some Ceramic, Cermet and Metallic Coatings Determined in the Coriolis Erosion Tester
,”
Wear
,
233–235
, pp.
319
327
.
166.
Fang
,
Q.
,
Xu
,
H.
,
Sidky
,
P. S.
, and
Hocking
,
M. G.
,
1999
, “
Erosion of Ceramic Materials by a Sand/Water Slurry Jet
,”
Wear
,
224
(
2
), pp.
183
193
.
167.
Matsumura
,
M.
,
Oka
,
Y.
, and
Yamawaki
,
M.
,
1987
, “
Slurry Erosion-Corrosion of Commercially Pure Iron in Fountain-Jet Testing Facility-Mechanism of Erosion (Corrosion Under Comparable Intensity of Erosion and Corrosion)
,”
Proc. 7th Int. Conf. on Erosion by Liquid and Solid Impact
,
University of Cambridge
,
Cambridge, Cambridgeshire, UK
, p.
40
.
168.
Zu
,
J. B.
,
Ihtchings
,
I. M.
, and
Burstein
,
G. T.
,
1990
, “
Design of a Slurry Erosion Test Rig
,”
Wear
,
140
(
2
), pp.
331
344
.
169.
Lin
,
F. Y.
, and
Shao
,
H. S.
,
1991
, “
Effect of Impact Velocity on Slurry Erosion and a New Design of a Slurry Erosion Tester
,”
Wear
,
143
(
2
), pp.
231
240
.
170.
Sun
,
B.
,
Fan
,
J.
,
Wen
,
D.
, and
Chen
,
Y.
,
2015
, “
An Experimental Study of Slurry Erosion Involving Tensile Stress for Pressure Pipe Manifold
,”
Tribology Int.
,
82
, pp.
280
286
.
171.
Xie
,
Y.
,
Jiang
,
J. J.
,
Tufa
,
K. Y.
, and
Yick
,
S.
,
2015
, “
Wear Resistance of Materials Used for Slurry Transport
,”
Wear
,
332–333
, pp.
1104
1110
.
172.
Karthik
,
S.
, and
Amarendra
,
H. J.
,
2020
, “
Development of Slurry Jet Erosion Test Rig—An Aid to Investigate Erosion Resistance of Materials
,”
Mater. Today Proc
.
173.
Kaplan
,
M.
,
Uyaner
,
M.
,
Avcu
,
E.
,
Avcu
,
Y. Yi.
, and
Karaoglanli
,
A. C.
,
2018
, “
Solid Particle Erosion Behavior of Thermal Barrier Coatings Produced by Atmospheric Plasma Spray Technique Solid Particle Erosion Behavior of Thermal Barrier Coatings Produced by Atmospheric Plasma Spray Technique
,”
Mech. Adv. Mater. Struct.
,
26
(
19
), pp.
1606
1612
.
174.
Tilly
,
G. P.
, and
Sage
,
W.
,
1970
, “
The Interaction of Particle and Material Behaviour in Erosion Processes
,”
Wear
,
16
, pp.
447
465
.
175.
Madsen
,
B. W.
,
1985
, “
A Study of Parameters Using a New Constant-Wear-Rate Slurry Test
,”
Proc. Int. Conf. on the Wear of Materials
,
K. C.
Ludema
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
345
854
.
176.
Wong
,
C. Y.
,
Solnordal
,
C.
,
Swallow
,
A.
,
Wang
,
S.
,
Graham
,
L.
, and
Wu
,
J.
,
2012
, “
Predicting the Material Loss Around a Hole Due to Sand Erosion
,”
Wear
,
276–277
, pp.
1
15
.
177.
Ruff
,
A. W.
, and
Ives
,
L. K.
,
1975
, “
Measurement of Solid Particle Velocity in Erosive Wear
,”
Wear
,
35
(
1
), pp.
195
199
.
178.
ASTM-G76-95
,
2000
,
Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets
,
ASTM International
,
West Conshohocken, PA
.
179.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
.
180.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
3
), pp.
169
190
.
181.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
182.
Tabakoff
,
W.
,
Kotwal
,
R.
, and
Hamed
,
A.
,
1979
, “
Erosion Study of Different Materials Affected by Coal Ash Particles
,”
Wear
,
52
(
1
), pp.
161
173
.
183.
Menguturk
,
M.
, and
Sverdrup
,
E. F.
,
1979
, “Calculated Tolerance of a Large Electric Utility Gas Turbine to Erosion Damage by Coal Gas Ash Particles,”
Erosion: Prevention and Useful Applications
,
W. F.
Adler
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
193
224
.
184.
Wang
,
J.
, and
Shirazi
,
S. A.
,
2003
, “
A CFD Based Correlation for Erosion Factor for Long-Radius Elbows and Bends
,”
ASME J. Energy Resour. Technol.
,
125
(
1
), pp.
26
34
.
185.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.
186.
Singh
,
J.
,
Kumar
,
S.
,
Singh
,
J. P.
,
Kumar
,
P.
, and
Mohapatra
,
S. K.
,
2019
, “
CFD Modeling of Erosion Wear in Pipe Bend for the Flow of Bottom Ash Suspension
,”
Part. Sci. Technol.
,
37
(
3
), pp.
275
285
.
187.
API RP14E
,
1981
, Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems, Washington, DC.
188.
Salama
,
M. M.
, and
Venkatesh
,
E. S.
,
1983
, “
Evaluation of API RP 14E Erosional Velocity Limitations for Offshore Gas Wells
.”
189.
Salama
,
M. M.
,
2000
, “
An Alternative to Api 14e Erosional Velocity Limits for Sand-Laden Fluids
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
71
77
.
190.
Bourgoyne
,
A. T.
, Jr.
,
1989
, “
Experimental study of erosion in diverter systems due to sand production
,”
SPEIDIDC 18716, Drilling Conference
,
New Orleans, LA
, pp.
807
816
.
191.
Hashish
,
M.
,
1988
, “
An Improved Model of Erosion by Solid Particles
,”
Proceedings of the International Conference on Erosion by Liquid and Solid Impact
,
Cavendish Laboratory, University of Cambridge
,
UK
, p.
66
.
192.
Kvernvold
,
O.
, and
Sandberg
,
R.
,
1993
, Production Rate Limits in Two-Phase Flow Systems Sand Erosion in Piping Systems, Report No. 93-3252.
193.
Wallace
,
M. S.
,
Peters
,
J. S.
,
Scanlon
,
T. J.
,
Dempster
,
W. M.
,
McCulloch
,
S.
, and
Ogilvie
,
J. B.
,
2000
, “
CFD-Based Erosion Modeling of Multi-Orifice Choke Valves
,”
Proceedings of Engineering Summer Meeting
,
ASME
,
Boston
, Paper No. FEDSM2000-11244.
194.
Norske Veritas
,
D.
,
2002
, “
DNV-RP-O501 Erosive Wear In Piping Systems
,” (
January
), pp.
1
29
.
195.
Oka
,
Y. I.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 2: Mechanical Properties of Materials Directly Associated with Erosion Damage
,”
Wear
,
259
(
1–6
), pp.
102
109
.
196.
Gupta
,
P. K.
, and
Pagalthivarthi
,
K. V.
,
2011
, “
Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow Through Rotating Channel
,”
World Acad. Sci. Eng. Technol.
,
74
(
2
), pp.
42
49
.
197.
Pagalthivarthi
,
K.
, and
Visintainer
,
R.
,
2013
, “
Finite Element Prediction of Multi-Size Particulate Flow Through Three-Dimensional Channel: Code Validation
,”
J. Comput. Multiph. Flows
,
5
(
1
), pp.
57
72
.
198.
Huang
,
C.
,
Chiovelli
,
S.
,
Minev
,
P.
,
Luo
,
J.
, and
Nandakumar
,
K.
,
2008
, “
A Comprehensive Phenomenological Model for Erosion of Materials in Jet Flow
,”
Powder Technol.
,
187
(
3
), pp.
273
279
.
199.
Frawley
,
P.
,
Corish
,
J.
,
Niven
,
A.
, and
Geron
,
M.
,
2009
, “
Combination of CFD and DOE to Analyse Solid Particle Erosion in Elbows
,”
Int. J. Comut. Fluid Dyn.
,
23
(
5
), pp.
411
426
.
200.
Campos-Amezcua
,
A.
,
Gallegos-Muñoz
,
A.
,
Alejandro Romero
,
C.
,
Mazur-Czerwiec
,
Z.
, and
Campos-Amezcua
,
R.
,
2007
, “
Numerical Investigation of the Solid Particle Erosion Rate in a Steam Turbine Nozzle
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2394
2403
.
201.
Morales B
,
A. M.
,
Pachón
,
I. F.
,
Loboguerrero U
,
J.
,
Medina
,
J. A.
, and
Escobar G
,
J. A.
,
2017
, “
Development of a Test Rig to Evaluate Abrasive Wear on Pelton Turbine Nozzles. A Case Study of Chivor Hydropower
,”
Wear
,
372–373
, pp.
208
215
.
202.
Padhy
,
M. K.
, and
Saini
,
R. P.
,
2012
, “
Study of Silt Erosion Mechanism in Pelton Turbine Buckets
,”
Energy
,
39
(
1
), pp.
286
293
.
203.
Rai
,
A. K.
,
Kumar
,
A.
, and
Staubli
,
T.
,
2015
, “
Developing a Test Rig
to
Measure Hydro-Abrasive Erosion in Pelton Turbine
,”
Proc. Intl. Conf. on Hydropower for Sustainable Development
,
Roorkee, India
, pp.
535
547
.
204.
Khurana
,
S.
,
Varun
, and
Kumar
,
A.
,
2016
, “
Silt Erosion Study on the Performance of an Impulse Turbine in Small Hydropower
,”
Int. J. Ambient Energy
,
37
(
5
), pp.
520
527
.
205.
Thapa
,
B.
, and
Brekke
,
H.
,
2004
, “
Effect of Sand Particle Size and Surface Curvature in Erosion of Hydraulic Turbine
,”
IAHR Symposium on Hydraulic Machinery and Systems
,
Stockholm
.
206.
Chattopadhyay
,
R.
,
1993
, “
Case Study: High Silt Wear of Hydroturbine Runners
,”
Wear
,
162–164
, pp.
1040
1044
.
207.
Roman
,
J. M.
,
Xin
,
L. Y.
,
Hui
,
W. M.
, and
Reginensi
,
J. P.
,
1997
, “
Dealing With Abrasive Erosion in Hydro Turbine
,”
Hydropower dams
,
3
, pp.
67
71
.
208.
Krause
,
M.
, and
Grein
,
H.
,
1996
, “
Abrasion Research and Prevention
,”
Int. J. Hydropower Dams
,
3
(
4
), pp.
17
20
.
209.
Naidu
,
B. S.
,
1997
, “
Addressing the Problems of Silt Erosion at Hydro Plants
,”
Int. J. Hydropower Dams.
,
4
(
3
), pp.
72
77
.
210.
Asthana
,
B. N.
,
1997
,
Determination of Optimal Sediment Size to Be Excluded for Run-of-River Project—A Case Study, Roorkee, India
.
211.
Schneider
,
C.
, and
Kachele
,
T.
,
1999
, “Recent Research Results on Predicting and Preventing Silt Erosion,”
1st International Conference on Silting Problems in Hydro Power Plants
,
C. V. J.
Varma
,
B. S. K.
Naidu
, and
A. R. G.
Rao
, eds.,
A.A. Balkema Publishers
,
Brookfield; New Delhi, India
, p.
III
.
212.
Grant
,
G.
, and
Tabakoff
,
W.
,
1974
, “
Erosion Prediction in Turbomachinery Due to Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
213.
Clark
,
H. M. I.
,
1992
, “
The Influence of the Flow Field in Slurry Erosion
,”
Wear
,
152
(
2
), pp.
223
240
.
You do not currently have access to this content.