Abstract

Despite the fabrication of particulate-reinforced composites via friction stir processing (FSP), an attempt was made to utilize FSP for the homogenization of filler dispersion in ZrB2/AA7075 in-situ composites fabricated via stir casting route, with varying weight percentages of ZrB2. The friction stir processing was performed for up to three passes with 100% overlap. The as-cast and friction stir processed (FSPed) composites were characterized for their microstructural, microhardness, and tribological behavior. The microstructural features revealed the increase in the misorientation angle among grain boundaries, with an increase in ZrB2 content and a number of FSP passes. Furthermore, the homogeneity of ZrB2 particles in the Al alloy matrix was significantly influenced by the number of FSP passes, which was quantified by Lorenz curves and Gini Indices. The FSPed alloy and composites exhibited higher microhardness as compared to their un-processed counterparts. The tribological behavior was investigated for three different load levels, i.e., 15 N, 30 N, and 45 N. The slope of the wear-rate at 45 N revealed that the Al-alloy exhibited a considerable increase in wear severity, whereas as-cast and FSPed composites did not show a significant increase. Both wear-rate and coefficient of friction decreased with an increase in the number of FSP passes and ZrB2 content. The scanning electron micrographs of worn surfaces confirmed the reduction in adhesion, abrasion, and delamination with the number of FSP passes. However, the synergism among the three depicted the overall tribological behavior.

References

1.
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2018
, “
Effect of Particle Size on dry Sliding Wear Behaviour of Sillimanite Reinforced Aluminium Matrix Composites
,”
Ceram. Int.
,
44
(
1
), pp.
104
114
. 10.1016/j.ceramint.2017.09.132
2.
Kumar
,
P.
, and
Srivastava
,
V. K.
,
2016
, “
A Review on Wear and Friction Performance of Carbon–Carbon Composites at High Temperature
,”
Int. J. Appl. Ceram. Technol.
,
13
(
4
), pp.
702
710
. 10.1111/ijac.12538
3.
Rohatgi
,
P. K.
,
Tabandeh-Khorshid
,
M.
,
Omrani
,
E.
,
Lovell
,
M. R.
, and
Menezes
,
P. L.
,
2013
, “Tribology of Metal Matrix Composites,”
Tribology for Scientists and Engineers
,
P. L.
Menezes
,
M.
Nosonovsky
,
S. P.
Ingole
,
S. V.
Kailas
, and
M. R.
Lovell
, eds.,
Springer
,
New York
, pp.
233
268
.
4.
Sahoo
,
P.
, and
Davim
,
J. P.
,
2013
, “Tribology of Ceramics and Ceramic Matrix Composites,”
Tribology for Scientists and Engineers
,
P. L.
Menezes
,
M.
Nosonovsky
,
S. P.
Ingole
,
S. V.
Kailas
, and
M. R.
Lovell
, eds.,
Springer
,
New York
, pp.
211
231
.
5.
Kai
,
X.
,
Zhao
,
Y.
,
Wang
,
A.
,
Wang
,
C.
, and
Mao
,
Z.
,
2015
, “
Hot Deformation Behavior of in Situ Nano ZrB2 Reinforced 2024Al Matrix Composite
,”
Compos. Sci. Technol.
,
116
, pp.
1
8
. 10.1016/j.compscitech.2015.05.006
6.
Bodunrin
,
M. O.
,
Alaneme
,
K. K.
, and
Chown
,
L. H.
,
2015
, “
Aluminium Matrix Hybrid Composites: a Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics
,”
J. Mater. Res. Technol.
,
4
(
4
), pp.
434
445
. 10.1016/j.jmrt.2015.05.003
7.
Surappa
,
M.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
. 10.1007/BF02717141
8.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2016
, “
Wear, Friction and Profilometer Studies of Insitu AA5052/ZrB2 Composites
,”
Tribol. Int.
,
97
, pp.
313
326
. 10.1016/j.triboint.2016.01.036
9.
Poria
,
S.
,
Sahoo
,
P.
, and
Sutradhar
,
G.
,
2016
, “
Tribological Characterization of Stir-Cast Aluminium-TiB2 Metal Matrix Composites
,”
Silicon
,
8
(
4
), pp.
591
599
. 10.1007/s12633-016-9437-5
10.
Rao
,
R. N.
, and
Das
,
S.
,
2011
, “
Effect of SiC Content and Sliding Speed on the Wear Behaviour of Aluminium Matrix Composites
,”
Mater. Des.
,
32
(
2
), pp.
1066
1071
. 10.1016/j.matdes.2010.06.047
11.
Zapata-Solvas
,
E.
,
Jayaseelan
,
D.
,
Lin
,
H.-T.
,
Brown
,
P.
, and
Lee
,
W.
,
2013
, “
Mechanical Properties of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering
,”
J. Eur. Ceram. Soc.
,
33
(
7
), pp.
1373
1386
. 10.1016/j.jeurceramsoc.2012.12.009
12.
Fu
,
S.-Y.
,
Feng
,
X.-Q.
,
Lauke
,
B.
, and
Mai
,
Y.-W.
,
2008
, “
Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites
,”
Composites, Part B
,
39
(
6
), pp.
933
961
. 10.1016/j.compositesb.2008.01.002
13.
Gupta
,
A. K.
,
Mallik
,
B.
, and
Roy
,
D.
,
2020
, “
Structure Property Correlation of In Situ Reinforced Al–Based Metal Matrix Composite via Stir Casting
,”
Mater. Perform. Charact.
,
9
(
1
), pp.
25
35
. 10.1520/MPC20190038
14.
Rozhbiany
,
F. A. R.
, and
Jalal
,
S. R.
,
2019
, “
Influence of Reinforcement and Processing on Aluminum Matrix Composites Modified by Stir Casting Route
,”
Adv. Compos. Lett.
,
28
, p.
2633366X19896584
.
15.
Zhang
,
Z.
,
Yang
,
R.
,
Li
,
Y.
,
Chen
,
G.
,
Zhao
,
Y.
, and
Liu
,
M.
,
2018
, “
Microstructural Evolution and Mechanical Properties of Friction Stir Processed ZrB2/6061Al Nanocomposites
,”
J. Alloys Compd.
,
762
, pp.
312
318
. 10.1016/j.jallcom.2018.05.216
16.
Mishra
,
R. S.
,
Ma
,
Z. Y.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng. A
,
341
(
1
), pp.
307
310
. 10.1016/S0921-5093(02)00199-5
17.
Gupta
,
M. K.
,
2020
, “
Friction Stir Process: a Green Fabrication Technique for Surface Composites—A Review Paper
,”
SN Appl. Sci.
,
2
(
4
), p.
532
. 10.1007/s42452-020-2330-2
18.
Liu
,
Z. Y.
,
Xiao
,
B. L.
,
Wang
,
W. G.
, and
Ma
,
Z. Y.
,
2012
, “
Singly Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined With Friction Stir Processing
,”
Carbon
,
50
(
5
), pp.
1843
1852
. 10.1016/j.carbon.2011.12.034
19.
Tewari
,
A.
,
Spowart
,
J. E.
,
Gokhale
,
A. M.
,
Mishra
,
R. S.
, and
Miracle
,
D. B.
,
2006
, “
Characterization of the Effects of Friction Stir Processing on Microstructural Changes in DRA Composites
,”
Mater. Sci. Eng. A
,
428
(
1
), pp.
80
90
. 10.1016/j.msea.2006.04.106
20.
Azimi-Roeen
,
G.
,
Kashani-Bozorg
,
S. F.
,
Nosko
,
M.
,
Orovcik
,
L.
, and
Lotfian
,
S.
,
2020
, “
Effect of Multi-Pass Friction Stir Processing on Textural Evolution and Grain Boundary Structure of Al–Fe3O4 System
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
1070
1086
. 10.1016/j.jmrt.2019.10.076
21.
Huang
,
K.
, and
Logé
,
R. E.
,
2016
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Mater. Des.
,
111
, pp.
548
574
. 10.1016/j.matdes.2016.09.012
22.
Khodabakhshi
,
F.
,
Nosko
,
M.
, and
Gerlich
,
A.
,
2018
, “
Influence of CNTs Decomposition During Reactive Friction-Stir Processing of an Al–Mg Alloy on the Correlation Between Microstructural Characteristics and Microtextural Components
,”
J. Microsc.
,
271
(
2
), pp.
188
206
. 10.1111/jmi.12708
23.
Azimi-roeen
,
G.
,
Kashani-bozorg
,
S. F.
,
Nosko
,
M.
, and
Orovcik
,
L.
,
2018
, “
EBSD Investigation of Al/(Al13Fe4+ Al2O3) Nanocomposites Fabricated by Mechanical Milling and Friction Stir Processing
,”
J. Microsc.
,
270
(
1
), pp.
3
16
. 10.1111/jmi.12642
24.
Cao
,
Y.
,
Di
,
H.
,
Zhang
,
J.
,
Zhang
,
J.
,
Ma
,
T.
, and
Misra
,
R. D. K.
,
2013
, “
An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–Chromium Alloy (800H) During hot Deformation
,”
Mater. Sci. Eng. A
,
585
, pp.
71
85
. 10.1016/j.msea.2013.07.037
25.
David Raja Selvam
,
J.
, and
Dinaharan
,
I.
,
2017
, “
In Situ Formation of ZrB2 Particulates and Their Influence on Microstructure and Tensile Behavior of AA7075 Aluminum Matrix Composites
,”
Eng. Sci. Technol.
,
20
(
1
), pp.
187
196
. 10.1016/j.jestch.2016.09.006
26.
Muralidharan
,
N.
,
Chockalingam
,
K.
,
Dinaharan
,
I.
, and
Kalaiselvan
,
K.
,
2018
, “
Microstructure and Mechanical Behavior of AA2024 Aluminum Matrix Composites Reinforced With In Situ Synthesized ZrB2 Particles
,”
J. Alloys Compd.
,
735
, pp.
2167
2174
. 10.1016/j.jallcom.2017.11.371
27.
Kumar
,
N.
,
Gautam
,
R. K.
, and
Mohan
,
S.
,
2015
, “
In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of AA5052 Metal-Matrix Composites
,”
Mater. Des.
,
80
, pp.
129
136
. 10.1016/j.matdes.2015.05.020
28.
Kumar
,
R. V.
,
Keshavamurthy
,
R.
,
Perugu
,
C. S.
,
Koppad
,
P. G.
, and
Alipour
,
M.
,
2018
, “
Influence of Hot Rolling on Microstructure and Mechanical Behaviour of Al6061-ZrB2 in-Situ Metal Matrix Composites
,”
Mater. Sci. Eng. A
,
738
, pp.
344
352
. 10.1016/j.msea.2018.09.104
29.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39
(
3
), pp.
642
658
. 10.1007/s11661-007-9459-0
30.
Hannard
,
F.
,
Castin
,
S.
,
Maire
,
E.
,
Mokso
,
R.
,
Pardoen
,
T.
, and
Simar
,
A.
,
2017
, “
Ductilization of Aluminium Alloy 6056 by Friction Stir Processing
,”
Acta Mater.
,
130
, pp.
121
136
. 10.1016/j.actamat.2017.01.047
31.
Yuvaraj
,
N.
,
Aravindan
,
S.
, and
Vipin
,
2015
, “
Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and its Tribological Characterization
,”
J. Mater. Res. Technol.
,
4
(
4
), pp.
398
410
. 10.1016/j.jmrt.2015.02.006
32.
Nene
,
S. S.
,
Liu
,
K.
,
Frank
,
M.
,
Mishra
,
R. S.
,
Brennan
,
R. E.
,
Cho
,
K. C.
,
Li
,
Z.
, and
Raabe
,
D.
,
2017
, “
Enhanced Strength and Ductility in a Friction Stir Processing Engineered Dual Phase High Entropy Alloy
,”
Sci. Rep.
,
7
(
1
), p.
16167
. 10.1038/s41598-017-16509-9
33.
Yang
,
R.
,
Zhang
,
Z.
,
Zhao
,
Y.
,
Chen
,
G.
,
Liu
,
M.
,
Jiao
,
L.
, and
Chen
,
L.
,
2016
, “
Microstructure-property Analysis of ZrB2/6061Al Hierarchical Nanocomposites Fabricated by Direct Melt Reaction
,”
Mater. Charact.
,
112
, pp.
51
59
. 10.1016/j.matchar.2015.12.012
34.
Gupta
,
R.
,
Chaudhari
,
G. P.
, and
Daniel
,
B. S. S.
,
2018
, “
Strengthening Mechanisms in Ultrasonically Processed Aluminium Matrix Composite With in-Situ Al3Ti by Salt Addition
,”
Composites, Part B
,
140
, pp.
27
34
. 10.1016/j.compositesb.2017.12.005
35.
Youssef
,
Y. M.
,
Dashwood
,
R. J.
, and
Lee
,
P. D.
,
2005
, “
Effect of Clustering on Particle Pushing and Solidification Behaviour in TiB2 Reinforced Aluminium PMMCs
,”
Composites, Part A
,
36
(
6
), pp.
747
763
. 10.1016/j.compositesa.2004.10.027
36.
Khan
,
M. A.
, and
Rohatgi
,
P. K.
,
1993
, “
A Numerical Study of Thermal Interaction of Solidification Fronts With Spherical Particles During Solidification of Metal-Matrix Composite Materials
,”
Compos. Eng.
,
3
(
10
), pp.
995
1006
. 10.1016/0961-9526(93)90007-7
37.
Zhang
,
Z.
,
Yang
,
R.
,
Guo
,
Y.
,
Chen
,
G.
,
Lei
,
Y.
,
Cheng
,
Y.
, and
Yue
,
Y.
,
2017
, “
Microstructural Evolution and Mechanical Properties of ZrB2/6061Al Nanocomposites Processed by Multi-Pass Friction Stir Processing
,”
Mater. Sci. Eng. A
,
689
, pp.
411
418
. 10.1016/j.msea.2017.02.083
38.
Dinaharan
,
I.
,
2016
, “
Influence of Ceramic Particulate Type on Microstructure and Tensile Strength of Aluminum Matrix Composites Produced Using Friction Stir Processing
,”
J. Asian Ceram. Soc.
,
4
(
2
), pp.
209
218
. 10.1016/j.jascer.2016.04.002
39.
Rossi
,
P.
,
Suarez
,
S.
,
Soldera
,
F.
, and
Mücklich
,
F.
,
2015
, “
Quantitative Assessment of the Reinforcement Distribution Homogeneity in CNT/Metal Composites
,”
Adv. Eng. Mater.
,
17
(
7
), pp.
1017
1021
. 10.1002/adem.201400352
40.
Aristizabal
,
K.
,
Katzensteiner
,
A.
,
Bachmaier
,
A.
,
Mücklich
,
F.
, and
Suárez
,
S.
,
2018
, “
On the Reinforcement Homogenization in CNT/Metal Matrix Composites During Severe Plastic Deformation
,”
Mater. Charact.
,
136
, pp.
375
381
. 10.1016/j.matchar.2018.01.007
41.
Rao
,
A. G.
,
Ravi
,
K. R.
,
Ramakrishnarao
,
B.
,
Deshmukh
,
V. P.
,
Sharma
,
A.
,
Prabhu
,
N.
, and
Kashyap
,
B. P.
,
2013
, “
Recrystallization Phenomena During Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1519
1529
. 10.1007/s11661-012-1489-6
42.
Yadav
,
D.
, and
Bauri
,
R.
,
2011
, “
Processing, Microstructure and Mechanical Properties of Nickel Particles Embedded Aluminium Matrix Composite
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1326
1333
. 10.1016/j.msea.2010.10.035
43.
Huang
,
G.
,
Wu
,
J.
,
Hou
,
W.
, and
Shen
,
Y.
,
2018
, “
Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing
,”
Mater. Sci. Eng. A
,
734
, pp.
353
363
. 10.1016/j.msea.2018.08.015
44.
Ajay Kumar
,
P.
,
Yadav
,
D.
,
Perugu
,
C. S.
, and
and Kailas
,
S. V.
,
2017
, “
Influence of Particulate Reinforcement on Microstructure Evolution and Tensile Properties of In-Situ Polymer Derived MMC by Friction Stir Processing
,”
Mater. Des.
,
113
, pp.
99
108
. 10.1016/j.matdes.2016.09.101
45.
Kumar
,
H.
,
Prasad
,
R.
,
Kumar
,
P.
,
Tewari
,
S. P.
, and
Singh
,
J. K.
,
2020
, “
Mechanical and Tribological Characterization of Industrial Wastes Reinforced Aluminum Alloy Composites Fabricated via Friction Stir Processing
,”
J. Alloys Compd.
,
831
, p.
154832
. 10.1016/j.jallcom.2020.154832
46.
Dinaharan
,
I.
,
Saravanakumar
,
S.
,
Kalaiselvan
,
K.
, and
Gopalakrishnan
,
S.
,
2017
, “
Microstructure and Sliding Wear Characterization of Cu/TiB2 Copper Matrix Composites Fabricated via Friction Stir Processing
,”
J. Asian Ceram. Soc.
,
5
(
3
), pp.
295
303
. 10.1016/j.jascer.2017.06.002
47.
Kumar
,
H.
,
Prasad
,
R.
, and
Kumar
,
P.
,
2020
, “
Effect of Multi-Groove Reinforcement Strategy on Cu/SiC Surface Composite Fabricated by Friction Stir Processing
,”
Mater. Chem. Phys.
,
256
, p.
123720
. 10.1016/j.matchemphys.2020.123720
48.
Huang
,
G.
, and
Shen
,
Y.
,
2017
, “
The Effects of Processing Environments on the Microstructure and Mechanical Properties of the Ti/5083Al Composites Produced by Friction Stir Processing
,”
J. Manuf. Process.
,
30
, pp.
361
373
. 10.1016/j.jmapro.2017.10.007
49.
Schneider
,
J. A.
, and
Nunes
,
A. C.
,
2004
, “
Characterization of Plastic Flow and Resulting Microtextures in a Friction Stir Weld
,”
Metall. Mater. Trans. B
,
35
(
4
), pp.
777
783
. 10.1007/s11663-004-0018-4
50.
Tongne
,
A.
,
Desrayaud
,
C.
,
Jahazi
,
M.
, and
Feulvarch
,
E.
,
2017
, “
On Material Flow in Friction Stir Welded Al Alloys
,”
J. Mater. Process. Technol.
,
239
, pp.
284
296
. 10.1016/j.jmatprotec.2016.08.030
51.
Schneider
,
J.
,
Beshears
,
R.
, and
Nunes
,
A. C.
,
2006
, “
Interfacial Sticking and Slipping in the Friction Stir Welding Process
,”
Mater. Sci. Eng. A
,
435–436
, pp.
297
304
. 10.1016/j.msea.2006.07.082
52.
Raviathul Basariya
,
M.
,
Srivastava
,
V. C.
, and
and Mukhopadhyay
,
N. K.
,
2014
, “
Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Aluminum Alloy Composites Produced by Ball Milling
,”
Mater. Des.
,
64
, pp.
542
549
. 10.1016/j.matdes.2014.08.019
53.
Wu
,
B. B.
,
Wang
,
Z. Q.
,
Wang
,
X. L.
,
Zhao
,
J. X.
,
Shang
,
C. J.
, and
Misra
,
R. D. K.
,
2019
, “
Relationship Between High Angle Grain Boundaries and Hardness After γ→α Transformation
,”
Mater. Sci. Technol.
,
35
(
15
), pp.
1803
1814
. 10.1080/02670836.2019.1647936
54.
Guha
,
R. D.
,
Sharma
,
A. J.
,
Diwan
,
P.
, and
Khanikar
,
P.
,
2017
, “
Effect of Grain Orientation on High Strain-Rate Plastic Deformation
,”
Procedia Eng.
,
173
, pp.
1048
1055
. 10.1016/j.proeng.2016.12.184
55.
Nallusamy
,
M.
,
Sundaram
,
S.
, and
Kalaiselvan
,
K.
,
2019
, “
Fabrication, Characterization and Analysis of Improvements in Mechanical Properties of AA7075/ZrB2 in-Situ Composites
,”
Measurement
,
136
, pp.
356
366
. 10.1016/j.measurement.2018.12.110
56.
Prasad
,
R.
,
Tewari
,
S.
, and
Singh
,
J.
,
2019
, “
Effect of Multi-Pass Friction Stir Processing on Microstructural, Mechanical and Tribological Behaviour of as-Cast Al–Zn–Mg–Cu Alloy
,”
Mater. Res. Express
,
6
(
9
), p.
096579
. 10.1088/2053-1591/ab308c
57.
Waghmare
,
A. K.
, and
Sahoo
,
P.
,
2015
, “
Adhesive Friction at the Contact Between Rough Surfaces Using n-Point Asperity Model
,”
Eng. Sci. Technol.
,
18
(
3
), pp.
463
474
. 10.1016/j.jestch.2015.03.006
58.
Konopka
,
K.
,
Boczkowska
,
A.
,
Batorski
,
K.
,
Szafran
,
M.
, and
Kurzydłowski
,
K. J.
,
2004
, “
Microstructure and Properties of Novel Ceramic–Polymer Composites
,”
Mater. Lett.
,
58
(
30
), pp.
3857
3862
. 10.1016/j.matlet.2004.07.025
59.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2005
, “
Mechanical Behavior of Zirconia/Alumina Composites
,”
Ceram. Int.
,
31
(
1
), pp.
39
46
. 10.1016/j.ceramint.2004.03.032
60.
Barmouz
,
M.
,
Besharati Givi
,
M. K.
, and
Seyfi
,
J.
,
2011
, “
On the Role of Processing Parameters in Producing Cu/SiC Metal Matrix Composites via Friction Stir Processing: Investigating Microstructure, Microhardness, Wear and Tensile Behavior
,”
Mater. Charact.
,
62
(
1
), pp.
108
117
. 10.1016/j.matchar.2010.11.005
61.
Zahmatkesh
,
B.
,
Enayati
,
M. H.
, and
Karimzadeh
,
F.
,
2010
, “
Tribological and Microstructural Evaluation of Friction Stir Processed Al2024 Alloy
,”
Mater. Des.
,
31
(
10
), pp.
4891
4896
. 10.1016/j.matdes.2010.04.054
62.
Bowden
,
F. P.
, and
Tabor
,
D.
,
2001
,
The Friction and Lubrication of Solids
,
Oxford University Press
,
Oxford, UK
.
63.
Kumar
,
A.
,
Staedler
,
T.
, and
Jiang
,
X.
,
2013
, “
Effect of Normal Load and Roughness on the Nanoscale Friction Coefficient in the Elastic and Plastic Contact Regime
,”
Beilstein J. Nanotechnol.
,
4
(
1
), pp.
66
71
. 10.3762/bjnano.4.7
64.
Neale
,
M. J.
,
1995
, “Nature of Surfaces and Contact,”
Tribology Handbook
, 2nd ed.,
M. J.
Neale
, ed.,
Butterworth-Heinemann
,
Oxford
, pp.
E1.1
E1.3
.
65.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Oxford, UK
.
66.
Menezes
,
P. L.
,
Kishore
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2011
, “
Role of Surface Texture, Roughness, and Hardness on Friction During Unidirectional Sliding
,”
Tribol. Lett.
,
41
(
1
), pp.
1
15
. 10.1007/s11249-010-9676-3
67.
Liou
,
J. W.
,
Chen
,
L. H.
, and
Lui
,
T. S.
,
1995
, “
The Concept of Effective Hardness in the Abrasion of Coarse two-Phase Materials with Hard Second-Phase Particles
,”
J. Mater. Sci.
,
30
(
1
), pp.
258
262
. 10.1007/BF00352159
68.
Feng
,
C.
,
Wang
,
Y.
,
Chen
,
W.
,
Zhang
,
L.
, and
Zhou
,
K.
,
2017
, “
The Mechanical Mixed Layer and Its Role in Cu-15Ni-8Sn/Graphite Composites
,”
Tribol. Trans.
,
60
(
1
), pp.
135
145
. 10.1080/10402004.2016.1152621
69.
Daoud
,
A.
, and
Abou El-khair
,
M. T.
,
2010
, “
Wear and Friction Behavior of Sand Cast Brake Rotor Made of A359–20vol% SiC Particle Composites Sliding Against Automobile Friction Material
,”
Tribol. Int.
,
43
(
3
), pp.
544
553
. 10.1016/j.triboint.2009.09.003
70.
Straffelini
,
G.
,
Pellizzari
,
M.
, and
Molinari
,
A.
,
2004
, “
Influence of Load and Temperature on the dry Sliding Behaviour of Al-Based Metal-Matrix-Composites Against Friction Material
,”
Wear
,
256
(
7
), pp.
754
763
. 10.1016/S0043-1648(03)00529-5
71.
Sudarshan
, and
Surappa
,
M. K.
,
2008
, “
Dry Sliding Wear of fly ash Particle Reinforced A356 Al Composites
,”
Wear
,
265
(
3
), pp.
349
360
. 10.1016/j.wear.2007.11.009
72.
Samanta
,
P. N.
, and
Leszczynski
,
J.
,
2018
, “
High-temperature Thermoelectric Transport Behavior of the Al/γ-Al 2 O 3 Interface: Impact of Electron and Phonon Scattering at Nanoscale Metal–Ceramic Contacts
,”
Phys. Chem. Chem. Phys.
,
20
(
21
), pp.
14513
14524
. 10.1039/C8CP01374H
73.
Singh
,
J.
, and
Alpas
,
A. T.
,
1996
, “
High-temperature Wear and Deformation Processes in Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
27
(
10
), pp.
3135
3148
. 10.1007/BF02663864
74.
Zhang
,
J.
, and
Alpas
,
A. T.
,
1997
, “
Transition Between Mild and Severe Wear in Aluminium Alloys
,”
Acta Mater.
,
45
(
2
), pp.
513
528
. 10.1016/S1359-6454(96)00191-7
You do not currently have access to this content.