Abstract

In this study, the coefficient of friction (COF) signals throughout the running-in process were examined by sliding a ring against a static disc. By reconstructing the scalar time-series into multi-dimensional phase spaces, friction-induced attractors were obtained and quantified by recursive characteristics analysis, which can effectively realize the running-in status identification. Moreover, a recursive characteristics analysis-based evaluation model was established to investigate the stationarity of the friction-induced attractors based on the recurrence quantification analysis (RQA) measures. The analyses of the numerically simulated signals and experimental results indicate that the extracted model is an intuitive and effective method. Furthermore, to improve the stationary of the friction-induced attractors, the normal pressure should be low, whereas the relative sliding velocities should be increased appropriately. These results would contribute to the revelation of the recursive characteristics of the tribosystem and the improvement of the stationarity of friction-induced attractors.

References

1.
Urbakh
,
M.
,
Klafter
,
J.
,
Gourdon
,
D.
, and
Israelachvili
,
J.
,
2004
, “
The Nonlinear Nature of Friction
,”
Nature
,
430
(
29
), pp.
525
528
. 10.1038/nature02750
2.
Liu
,
T.
,
Li
,
G. B.
,
Wei
,
H. J.
, and
Dun
,
D.
,
2016
, “
Experimental Observation of Cross Correlation Between Tangential Friction Vibration and Normal Friction Vibration in a Running-in Process
,”
Tribol. Int.
,
97
, pp.
77
88
. 10.1016/j.triboint.2016.01.018
3.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Zhou
,
Y. K.
, and
Zuo
,
X.
,
2018
, “
Chaotic Characteristics and Attractor Evolution of Friction Noise During Friction Process
,”
Friction
,
6
(
1
), pp.
47
61
. 10.1007/s40544-017-0161-y
4.
Zhou
,
Y. K.
,
Zuo
,
X.
,
Zhu
,
H.
, and
Tang
,
W.
,
2018
, “
Development of Prediction Models of Running-in Attractor
,”
Tribol. Int.
,
117
, pp.
98
106
. 10.1016/j.triboint.2017.08.018
5.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
,
Yan
,
L.
, and
Chen
,
N. X.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
. 10.1016/j.triboint.2015.02.027
6.
Ding
,
C.
,
Sun
,
G. D.
,
Zhou
,
Z. Y.
, and
Piao
,
Z. Y.
,
2021
, “
Investigation of the Optimum Surface Roughness of AISI 5120 Steel by Using a Running-in Attractor
,”
ASME J. Tribol.
,
143
(
9
), p.
094501
. 10.1115/1.4049267
7.
Casdagli
,
M. C.
,
1997
, “
Recurrence Plots Revisited
,”
Phys. D
,
108
(
1–2
), pp.
12
44
. 10.1016/S0167-2789(97)82003-9
8.
Addo
,
P. M.
,
Billio
,
M.
, and
Gurgan
,
D.
,
2013
, “
Nonlinear Dynamics and Recurrence Plots for Detecting Financial Crisis
,”
N. Am. J. Econ. Financ.
,
26
, pp.
416
435
. 10.1016/j.najef.2013.02.014
9.
Llop
,
M. F.
,
Gascons
,
N.
, and
Llauro
,
F. X.
,
2015
, “
Recurrence Plots to Characterize Gas-Solid Fluidization Regimes
,”
Int. J. Multiphas. Flow
,
73
, pp.
43
56
. 10.1016/j.ijmultiphaseflow.2015.03.003
10.
Marwan
,
N.
,
Kurths
,
J.
, and
Foerster
,
S.
,
2015
, “
Analysing Spatially Extended High-Dimensional Dynamics by Recurrence Plots
,”
Phys. Lett. A.
,
379
(
10–11
), pp.
894
900
. 10.1016/j.physleta.2015.01.013
11.
Chen
,
W. S.
,
2011
, “
Use of Recurrence Plot and Recurrence Quantification Analysis in Taiwan Unemployment Rate Time Series
,”
Phys. A
,
390
(
7
), pp.
1332
1342
. 10.1016/j.physa.2010.12.020
12.
Kecik
,
K.
,
Ciecielag
,
K.
, and
Zaleski
,
K.
,
2017
, “
Damage Detection of Composite Milling Process by Recurrence Plots and Quantification Analysis
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
133
144
. 10.1007/s00170-016-9048-8
13.
Snatos
,
M. S.
,
Jr
,
S. J. D.
,
Batista
,
A. M.
,
Caldas
,
I. L.
,
Viana
,
R. L.
, and
Lopes
,
S. R.
,
2015
, “
Recurrence Quantification Analysis of Chimera States
,”
Phys. Lett. A.
,
397
(
37
), pp.
2188
2192
. 10.1016/j.physleta.2015.07.029
14.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Chaos in Brake Squeal Noise
,”
J. Sound. Vib.
,
330
(
5
), pp.
955
975
. 10.1016/j.jsv.2010.09.009
15.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2015
, “
Nonlinear Transient and Chaotic Interactions in Disc Brake Squeal
,”
J. Sound. Vib
,
342
, pp.
272
289
. 10.1016/j.jsv.2015.01.005
16.
Sun
,
G. D.
,
Zhu
,
H.
,
Ding
,
C.
,
Jiang
,
Y.
, and
Wei
,
C. L.
,
2019
, “
On the Boundedness of Running-in Attractors Based on Recurrence Plot and Recurrence Qualification Analysis
,”
Friction
,
7
(
5
), pp.
432
443
. 10.1007/s40544-018-0218-6
17.
Zhu
,
H.
,
Zuo
,
X.
, and
Zhou
,
Y. K.
,
2016
, “
Recurrence Evolvement of Brass Surface Profile in Lubricated Wear Process
,”
Wear
,
352–353
, pp.
9
17
. 10.1016/j.wear.2016.01.022
18.
Ding
,
C.
,
Zhu
,
H.
,
Jiang
,
Y.
,
Sun
,
G. D.
, and
Wei
,
C. L.
,
2019
, “
Recursive Characteristics of a Running-in Attractor in a Ring-on-Disk Tribosystem
,”
ASME J. Tribol.
,
141
(
1
), p.
011604
. 10.1115/1.4041018
19.
Zuo
,
X.
,
Peng
,
M. L.
, and
Zhou
,
Y. K.
,
2019
, “
Consistency Analysis of Worn Surface Topography and Friction Force Based on Phase Trajectory and Recurrence Analysis
,”
Fractals
,
27
(
8
), p.
1950130
.
20.
Eckmann
,
J.
,
Kamphorst
,
S.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Europhys. Lett.
,
4
(
9
), pp.
973
977
. 10.1209/0295-5075/4/9/004
21.
Zbilut
,
J. P.
, and
Webber
,
C. L.
,
1992
, “
Embeddings and Delays as Derived From Quantification of Recurrence Plots
,”
Phys. Lett. A
,
171
(
3–4
), pp.
199
203
. 10.1016/0375-9601(92)90426-M
22.
Webber
,
C. L.
, and
Zbilut
,
J. P.
,
1994
, “
Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies
,”
J Appl. Physiol.
,
76
(
2
), pp.
965
973
. 10.1152/jappl.1994.76.2.965
23.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Lect. Notes. Math.
,
898
, pp.
385
393
.
24.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
. 10.1016/j.physrep.2006.11.001
25.
Sun
,
G. D.
,
Zhu
,
H.
,
Ding
,
C.
,
Jiang
,
Y.
, and
Wei
,
C. L.
,
2019
, “
Using Recurrence Plots for Stability Analysis of Ring-on-Disc Tribopairs
,”
Ind. Lubr. Tribol.
,
71
(
4
), pp.
532
539
. 10.1108/ILT-07-2018-0265
26.
Yang
,
D.
, and
Ren
,
W. X.
,
2011
, “
Non-Stationary Evaluating for Vibration Signals Using Recurrence Plot
,”
J. Vib. Shock
,
30
(
12
), pp.
39
43
(in Chinese).
27.
Liu
,
S. F.
,
Yang
,
Y. J.
,
Cao
,
Y.
, and
Xie
,
N. M.
,
2013
, “
A Summary on the Research of GRA Models
,”
Grey Syst.
,
3
(
1
), pp.
7
15
. 10.1108/20439371311293651
28.
Wang
,
J. Q.
, and
Wang
,
X. L.
,
2013
, “
A Wear Particle Identification Method by Combining Principal Component Analysis and Grey Relational Analysis
,”
Wear
,
304
(
1–2
), pp.
96
102
. 10.1016/j.wear.2013.04.021
29.
Sha
,
Z. H.
,
Ru
,
G. T.
,
Yin
,
J.
,
Liu
,
Y.
,
Ma
,
F. J.
,
Yang
,
D. P.
, and
Zhang
,
S. F.
,
2019
, “
Research on Motion Characteristics of Single Particle Third Body in Braking Process Based on W-M Fractal Feature
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
692
, p.
012011
. 10.1088/1757-899X/692/1/012011
30.
Thiel
,
M.
,
Romano
,
M. C.
, and
Kurths
,
J.
,
2004
, “
How Much Information is Contained in a Recurrence Plot?
,”
Phys. Lett. A
,
330
(
5
), pp.
343
349
. 10.1016/j.physleta.2004.07.050
You do not currently have access to this content.