Abstract

This study applied appropriate assumptions to simplify a surface acoustic wave (SAW) motor model, as well as the elastic friction layer concept to analyze the two-dimensional contact problem. The effect of inertial force was factored into the equation of motion for the friction layer; the relationship between external force and the displacement of the friction layer surface was determined via Fourier transform; and the displacement field under different loads was analyzed using numerical methods. Based on the friction theory proposed by Armstrong, the relative velocity of the friction layer between the slider and stator was considered in the relationship between the normal and tangential forces acting on both contact surfaces. Finally, the deformation and the contact forces acting on the friction layer were evaluated by assuming the displacement of the stator substrate.

References

1.
Barth
,
H. V.
,
1973
, “
Ultrasonic Driven Motor
,”
IBM Tech. Disclosure Bull.
,
16
, p.
2263
.
2.
Lavrinenko
,
V. V.
,
Vishnevski
,
V. S.
, and
Kartashev
,
I. A.
,
1976
, “
Equivalent Circuits of Piezoelectric Motor
,”
Bulletin of Kiev Polytechnical Institute Series, Radio-Electrics
, Vol. 13, pp.
57
61
.
3.
Sashida
,
T.
,
1982
, “
Trial Construction of an Ultrasonic Vibration Driven Motor
,”
Oyo Butsuri
,
51
(
6
), pp.
713
720
.
4.
Sashida
,
T.
, and
Kenjo
,
T.
,
1993
,
An Introduction to Ultrasonic Motors
,
Clarendon Press
,
Oxford, UK
.
5.
Ueha
,
S.
,
Tomikawa
,
Y.
,
Kurosawa
,
M.
, and
Nakamura
,
N.
,
1993
,
Ultrasonic Motors—Theory and Applications
,
Clarendon Press
,
Oxford, UK
.
6.
Uchino
,
K.
,
1997
,
Piezoelectric Actuators and Ultrasonic Motors
,
Kluwer Academic Publishers
,
Boston, MA
.
7.
Snitka
,
V.
,
Mizariene
,
V.
, and
Zukauskas
,
D.
,
1996
, “
The Status of Ultrasonic Motors in the Former Soviet Union
,”
Ultrasonics
,
34
(
2
), pp.
247
250
. 10.1016/0041-624X(95)00074-D
8.
Iula
,
A.
,
Corbob
,
A.
, and
Pappalardo
,
M.
,
2010
, “
FE Analysis and Experimental Evaluation of the Performance of a Travelling Wave Rotary Motor Driven by High Power Ultrasonic Transducers
,”
Sens. Actuators, A
,
160
(
1–2
), pp.
94
100
. 10.1016/j.sna.2010.03.037
9.
Hou
,
X.
,
Lee
,
H. P.
,
Ong
,
C. J.
, and
Lim
,
S. P.
,
2013
, “
Development and Numerical Characterization of a New Standing Wave Ultrasonic Motor Operating in the 30–40 kHz Frequency Range
,”
Ultrasonics
,
53
(
5
), pp.
928
934
. 10.1016/j.ultras.2012.10.016
10.
Lu
,
X. L.
,
Hu
,
J. H.
,
Lin
,
Y.
, and
Zhao
,
C. H.
,
2013
, “
A Novel Dual Stator-Ring Rotary Ultrasonic Motor
,”
Sens. Actuators, A
,
189
, pp.
504
511
. 10.1016/j.sna.2012.11.009
11.
Shi
,
J. Z.
,
Zhao
,
F. J.
,
Shen
,
X. X.
, and
Wang
,
X. J.
,
2013
, “
Chaotic Operation and Chaos Control of Travelling Wave Ultrasonic Motor
,”
Ultrasonics
,
53
(
6
), pp.
1112
1123
. 10.1016/j.ultras.2013.02.006
12.
Kurosawa
,
M.
,
Takahashi
,
M.
, and
Higuch
,
T.
,
1994
, “
An Ultrasonic XY Stage Using 10 MHz Surface Acoustic Wave
,”
Proceedings of the IEEE Ultrasonics Symposium
, pp.
535
538
.
13.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
. 10.1109/9.376053
14.
Morita
,
T.
,
Kurosawa
,
M.
, and
Higuchi
,
T.
,
1999
, “
Simulation of Surface Acoustic Wave Motor With Spherical Slider
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
46
(
4
), pp.
929
934
. 10.1109/58.775659
15.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Prajogo
,
T.
,
2000
, “
An Integrated Friction Model Structure With Improved Pre-Sliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
675
686
. 10.1109/9.847103
16.
Kurosawa
,
M.
,
Itoh
,
H.
,
Asai
,
K.
,
Takasaki
,
M.
, and
Higuchi
,
T.
,
2001
, “
Optimization of Slider Contact Force Geometry for Surface Acoustic Wave Motor
,”
Proceedings of the IEEE Ultrasonic Symposium
, pp.
252
255
.
17.
Dupont
,
P.
,
Hayward
,
V.
,
Armstrong
,
B.
, and
Altpeter
,
F.
,
2002
, “
Single State Elastoplastic Friction Models
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
787
792
. 10.1109/TAC.2002.1000274
18.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2002
, “
Stepping Motion Analysis of Surface Acoustic Wave Motor Toward Nanometer Resolution Positioning System
,”
Proceedings of the IEEE Ultrasonic Symposium
, pp.
8
11
.
19.
Kurosawa
,
M. K.
,
Itoh
,
H.
, and
Asai
,
K.
,
2003
, “
Elastic Friction Drive of Surface Acoustic Wave Motor
,”
Ultrasonics
,
41
(
4
), pp.
271
275
. 10.1016/S0041-624X(02)00451-1
20.
Feenstra
,
P. J.
, and
Breedveld
,
P. C.
,
2003
, “
Analysis of a Surface Acoustic Wave Motor
,”
Proceedings of the IEEE Ultrasonic Symposium
, pp.
1133
1136
.
21.
Lampaert
,
V.
,
Al-Bender
,
F.
, and
Swevers
,
J.
,
2003
, “
A Generalized Maxwell-Slip Friction Model Appropriate for Control Purposes
,”
Proceedings of International Physics and Control Conference
, pp.
1170
1177
.
22.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2008
, “
Friction Drive of an SAW Motor. Part I: Measurements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2005
2015
. 10.1109/TUFFC.891
23.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2008
, “
Friction Drive of an SAW Motor. Part II: Analyses
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2016
2024
. 10.1109/TUFFC.892
24.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2008
, “
Friction Drive of an SAW Motor. Part III: Modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
10
), pp.
2266
2276
. 10.1109/TUFFC.925
25.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2008
, “
Friction Drive of an SAW Motor. Part IV: Physics of Contact
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
10
), pp.
2277
2287
. 10.1109/TUFFC.926
26.
Shigematsu
,
T.
, and
Kurosawa
,
M.
,
2008
, “
Friction Drive of an SAW Motor. Part V: Design Criteria
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
10
), pp.
2288
2297
. 10.1109/TUFFC.927
27.
Behera
,
B.
, and
Nemade
,
H. B.
,
2016
, “
Modeling and Finite Element Simulation of a Surface Acoustic Wave Driven Linear Motor
,”
Procedia Eng.
,
144
, pp.
1411
1418
. 10.1016/j.proeng.2016.05.172
28.
Armstrong
,
H. B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatics
,
30
(
7
), pp.
1083
1138
. 10.1016/0005-1098(94)90209-7
29.
Yu
,
T. H.
,
2019
, “
Characteristic Measurement of a Surface Acoustic Wave Nano-Stepping Motor by Using a Fiber-Optic Michelson Interferometer
,”
Adv. Mech. Eng.
,
11
(
9
), pp.
1
21
. 10.1177/1687814019876190
30.
Lih
,
S. S.
, and
Mal
,
A. K.
,
1992
, “
Elastodynamic Response of a Unidirectional Composite Laminate to Concentrated Surface Loads: Part II
,”
ASME J. Appl. Mech
,
59
(
4
), pp.
887
892
. 10.1115/1.2894057
31.
Auld
,
B. A.
,
1990
,
Acoustic Fields and Waves in Solids
, 2nd ed., Vol. 1,
John Wiley and Sons
,
New York
.
32.
Auld
,
B. A.
,
1990
,
Acoustic Fields and Waves in Solids
, 2nd ed., Vol. 2,
John Wiley and Sons
,
New York
.
33.
Tancrell
,
R. H.
, and
Holland
,
M. G.
,
1971
, “
Acoustic Surface Wave Filters
,”
Proceedings of the IEEE Ultrasonic Symposium
, pp.
393
409
.
34.
Chiba
,
M.
,
Takahashi
,
M.
,
Kurosawa
,
M.
, and
Higuchi
,
T.
,
1997
, “
Evaluation of a Surface Acoustic Wave Motor Output Force
,”
Proceedings of the IEEE Ultrasonic Symposium
, pp.
250
255
.
You do not currently have access to this content.