Abstract

The study presents a dynamic wear model for micro-grooved water-lubricated bearings considering the transient mixed elastohydrodynamic lubrication (mixed-EHL) condition. In the established model, the modified Archard wear model and the mixed-EHL model are bridged to study the transient interdependent relationship between the sliding wear behavior and the mixed-EHL performance. In order to consider the effect of the transient mixed-EHL performance on the sliding wear, the Archard model is extended to include the time-varying wear coefficient based on the fatigue concept. To verify the presented model, the comparisons with the experimental results available in the literatures have been conducted. In this study, the evolution of the wear and mixed-EHL performance distribution over time is predicted, and the impact of the radial clearance, boundary friction coefficient, and surface parameters on the numerical predictions is evaluated. The simulation results reveal that the worn region moves toward the rotational direction slowly. The simulation results also reveal that the wear rate and the wear coefficient first decrease considerably, and then decrease gently, and the sliding wear geometry promotes the hydrodynamic effects and reduces the asperity contact during the operation. Furthermore, the parametric study demonstrates that dynamic wear and mixed-EHL performance is sensitive to the radial clearance, boundary friction coefficient, and surface parameters.

References

1.
Lushington
,
S. H.
,
1976
, “
Water Lubricated Bearings
,”
Tribol. Int.
,
9
(
6
), pp.
257
260
. 10.1016/0301-679X(76)90014-1
2.
Wang
,
Q. J.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1997
, “
Study of Mixed Lubrication of Journal-Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
456
461
. 10.1115/1.2833519
3.
Shi
,
F. H.
, and
Wang
,
Q. J.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts-Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
198
205
. 10.1115/1.2834410
4.
Wang
,
Q. J.
,
Shi
,
F. H.
, and
Lee
,
S. C.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contact-Part II: Contact, Film Thickness, and Performance Analyses
,”
ASME J. Tribol.
,
120
(
2
), pp.
206
213
. 10.1115/1.2834411
5.
Gao
,
G. Y.
,
Yin
,
Z. W.
,
Jiang
,
D.
, and
Zhang
,
X. L.
,
2014
, “
Numerical Analysis of Plain Journal Bearing Under Hydrodynamic Lubrication by Water
,”
Tribol. Int.
,
75
, pp.
31
38
. 10.1016/j.triboint.2014.03.009
6.
Gong
,
J. Y.
,
Jin
,
Y.
,
Liu
,
Z. L.
,
Jiang
,
H.
, and
Xiao
,
M. H.
,
2019
, “
Study on Influencing Factors of Lubrication Performance of Water-Lubricated Micro-Groove Bearing
,”
Tribol. Int.
,
143
, pp.
390
397
. 10.1016/j.triboint.2018.08.035
7.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
Mccloskey
,
T. H.
,
1983
, “
Wear of Steam Turbine Journal Bearings at Low Operating Speeds
,”
ASME J. Lubr. Tech.
,
105
(
3
), pp.
313
317
. 10.1115/1.3254599
8.
Chun
,
S. M.
, and
Khonsari
,
M. M.
,
2016
, “
Wear Simulation for the Journal Bearings Operating Under Aligned Shaft and Steady Load During Start-Up and Coast-Down Conditions
,”
Tribol. Int.
,
97
, pp.
440
466
. 10.1016/j.triboint.2016.01.042
9.
Zhu
,
D.
,
Martini
,
A.
, and
Wang
,
W. Z.
,
2007
, “
Simulation of Sliding Wear in Mixed Lubrication
,”
ASME J. Tribol.
,
129
(
3
), pp.
544
552
. 10.1115/1.2736439
10.
Sander
,
D. E.
,
Allmaier
,
H.
,
Priebsch
,
H. H.
,
Reich
,
C. H.
,
Witt
,
M.
,
Skiadas
,
A.
, and
Knaus
,
O.
,
2015
, “
Edge Loading and Running-In Wear in Dynamically Loaded Journal Bearings
,”
Tribol. Int.
,
92
, pp.
395
403
. 10.1016/j.triboint.2015.07.022
11.
Sander
,
D. E.
, and
Allmaier
,
H.
,
2018
, “
Starting and Stopping Behavior of Worn Journal Bearings
,”
Tribol. Int.
,
127
, pp.
478
488
. 10.1016/j.triboint.2018.06.031
12.
Litwin
,
W.
,
2016
, “
Influence of Local Bush Wear on Water Lubricated Sliding Bearing Load Carrying Capacity
,”
Tribol. Int.
,
103
, pp.
352
358
. 10.1016/j.triboint.2016.06.044
13.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2010
, “
A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding Condition
,”
Tribol. Lett.
,
38
(
3
), pp.
347
354
. 10.1007/s11249-010-9614-4
14.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
Wiley
,
New York, NY
.
15.
Qin
,
W.
,
Zhang
,
Y.
, and
Li
,
C.
,
2018
, “
Determination of Wear Coefficient in Mixed Lubrication Using FEM
,”
App. Math. Modelling
,
59
, pp.
629
639
. 10.1016/j.apm.2018.02.024
16.
Wang
,
H. B.
,
Zhou
,
C. J.
,
Lei
,
Y. Y.
, and
Liu
,
Z. G.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426–427
, pp.
896
909
. 10.1016/j.wear.2019.01.104
17.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2019
, “
Application of Thermodynamic Principles in Determining the Degradation of Tribo-Components Subjected to Oscillating Motion in Boundary and Mixed Lubrication Regimes
,”
Wear
,
436–437
, pp.
1
9
. 10.1016/j.wear.2019.203002
18.
Kragelskii
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
1982
,
“Friction and Wear: Calculation Methods”
,
China Machine Press
,
Beijing, China
.
19.
Halling
,
J.
,
1976
, “
A Contribution to the Theory of Friction and Wear and the Relationship Between Them
,”
Proc. Inst. Mech. Eng
,
190
(
1
), pp.
291
299
.
20.
Yamada
,
K.
,
Takeda
,
N.
, and
Kagami
,
J.
,
1979
, “
Analysis of the Mechanism of Steady Wear by the Fatigue Theory as a Stochastic Process
,”
Wear
,
54
(
2
), pp.
217
233
. 10.1016/0043-1648(79)90116-9
21.
Omar
,
M. K.
, and
Atkins
,
A. G.
,
1986
, “
The Adhesive-Fatigue Wear of Metals
,”
Wear
,
107
(
3
), pp.
279
285
. 10.1016/0043-1648(86)90230-9
22.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2013
, “
An Engineering Approach for the Prediction of Wear in Mixed Lubricated Contacts
,”
Wear
,
308
(
1–2
), pp.
121
131
. 10.1016/j.wear.2013.10.004
23.
Yamamoto
,
Y.
, and
Takashima
,
T.
,
2004
, “
Friction and Wear of Water Lubricated PEEK and PPS Sliding Contacts
,”
Wear
,
253
(
7–8
), pp.
820
826
. 10.1016/S0043-1648(02)00059-5
24.
Yamamoto
,
Y.
, and
Hashimoto
,
M.
,
2004
, “
Friction and Wear of Water Lubricated PEEK and PPS Sliding Contacts Part 2. Composites With Carbon or Glass Fibre
,”
Wear
,
257
(
1–2
), pp.
181
189
. 10.1016/j.wear.2003.12.004
25.
Khare
,
N.
,
Limaye
,
P. K.
, and
Soni
,
N. L.
,
2015
, “
Friction and Wear Characteristics of PEEK and PEEK Composites in Water Lubricated Slow Speed Sliding”, Tribol
,”
Online
,
10
(
1
), pp.
84
90
. 10.2474/trol.10.84
26.
Wang
,
H. J.
,
Liu
,
Z. L.
, and
Zou
,
L.
,
2017
, “
Influence of Both Friction and Wear on the Vibration of Marine Water Lubricated Rubber Bearing
,”
Wear
,
376–377
, pp.
920
930
. 10.1016/j.wear.2017.02.006
27.
Chan
,
C. W.
,
Han
,
Y. F.
,
Wang
,
Z. J.
,
Wang
,
J. X.
,
Shi
,
F. H.
,
Wang
,
N. Z.
, and
Wang
,
Q.
,
2014
, “
Exploration on a Fast EHL Computing Technology for Analyzing Journal Bearings With Engineered Surface Textures
,”
Tribol. Trans.
,
57
(
2
), pp.
206
215
. 10.1080/10402004.2013.863987
28.
Xiang
,
G.
,
Han
,
Y. F.
,
Wang
,
J. X.
,
Xiao
,
K.
, and
Li
,
J. Y.
,
2019
, “
A Transient Hydrodynamic Lubrication Comparative Analysis for Misaligned Micro-Grooved Bearing Considering Axial Reciprocating Movement of Shaft
,”
Tribol. Int.
,
132
, pp.
11
23
. 10.1016/j.triboint.2018.12.004
29.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2016
, “
Effect of Support Stiffness and Damping on Stability Characteristics of Herringbone-Grooved Aerodynamic Journal Bearings Mounted on Viscoelastic Supports
,”
Tribol. Int.
,
100
, pp.
195
203
. 10.1016/j.triboint.2016.01.019
30.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Tech.
,
100
(
1
), pp.
12
17
. 10.1115/1.3453103
31.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
. 10.1115/1.3261872
32.
Lee
,
S.
, and
Ren
,
L.
,
1996
, “
Behaviour of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load, and Material Hardness
,”
ASLE Trans.
,
39
(
1
), pp.
67
74
. 10.1080/10402009608983503
33.
Tan
,
Y. Q.
,
Zhang
,
L. H.
, and
Hu
,
Y. H.
,
2015
, “
A Wear Model of Plane Sliding Pairs Based on Fatigue Contact Analysis of Asperities
,”
ASLE Trans.
,
58
(
1
), pp.
148
157
. 10.1080/10402004.2014.956907
34.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1996
, “
Contact of Nominally Flat Surfaces
,”
P. Roy. Soc.
,
295
(
1442
), pp.
300
319
.
35.
Cha
,
E.
, and
Bogy
,
D. B.
,
1995
, “
A Numerical Scheme for Static and Dynamic Simulation of Subambient Pressure Shaped Rail Sliders
,”
ASME J. Tribol.
,
117
(
1
), pp.
36
46
. 10.1115/1.2830604
36.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London, UK
.
37.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearing
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
. 10.1080/05698196508972102
38.
Offner
,
G.
, and
Knaus
,
O.
,
2015
, “
A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation
,”
Lubricants
,
3
(
3
), pp.
522
538
. 10.3390/lubricants3030522
39.
Christensen
,
H.
, and
Tonder
,
K.
,
1973
, “
The Hydrodynamic Lubrication of Rough Journal Bearings
,”
ASME J. Lubr. Tech.
,
95
(
2
), pp.
166
172
. 10.1115/1.3451759
40.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2006
, “
Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing—Comparison Between Deterministic and Stochastic Models
,”
ASME J. Tribol.
,
128
(
4
), pp.
778
788
. 10.1115/1.2345404
41.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2008
, “
Influence of Mixed-Lubrication and Rough Elastic-Plastic Contact on the Performance of Small Fluid Film Bearings
,”
Tribol. Trans.
,
51
(
6
), pp.
699
717
. 10.1080/10402000801888903
42.
Cui
,
S. H.
,
Gu
,
L.
,
Fillon
,
M.
,
Wang
,
L. Q.
, and
Zhang
,
C. W.
,
2018
, “
The Effects of Surface Roughness on the Transient Characteristics of Hydrodynamic Cylindrical Bearings During Startup
,”
Tribol. Int.
,
128
, pp.
421
428
. 10.1016/j.triboint.2018.06.010
You do not currently have access to this content.