Abstract

Laser shock peening (LSP) is one of the widely used surface processing techniques for tailoring functional behavior of surfaces. LSP has been used to enhance friction, wear, and mechanical properties. However, understanding of LSP-treated surfaces involving tribological contacts in electrochemically active environments is limited because the mechanism of wear–corrosion interactions (tribocorrosion) for such surfaces is still unclear. In the present study, the effect of LSP on the wear–corrosion behavior of an AZ31B Mg alloy is investigated. A zero-resistance ammeter (ZRA) method is utilized to examine the evolution of open circuit potential (OCP) during wear–corrosion analysis. The study finds that the LSP processing can decrease the corrosion potential difference between worn and unworn regions of the surface, thereby mitigating the effect of wear-accelerated corrosion during sliding. The effect of wear-accelerated corrosion is evident from the change in average surface roughness (Sa) of the unworn areas. It is found that understanding the change in surface roughness due to wear–corrosion interactions is necessary to investigate the onset and propagation of galvanic corrosion. Based on these results, the study details the mechanism of wear–corrosion interactions during sliding.

References

1.
Batchelor
,
A. W.
, and
Stachowiak
,
G. W.
,
1988
, “
Predicting Synergism Between Corrosion and Abrasive Wear
,”
Wear
,
123
(
3
), pp.
281
291
. 10.1016/0043-1648(88)90144-5
2.
Iwabuchi
,
A.
,
Lee
,
J. W.
, and
Uchidate
,
M.
,
2007
, “
Synergistic Effect of Fretting Wear and Sliding Wear of Co-Alloy and Ti-Alloy in Hanks’ Solution
,”
Wear
,
263
(
1
), pp.
492
500
. 10.1016/j.wear.2007.01.102
3.
Iwabuchi
,
A.
,
Tsukamoto
,
T.
,
Shimizu
,
T.
, and
Yashiro
,
H.
,
1998
, “
The Mechanism of Corrosive Wear of an Austenitic Stainless Steel in an Aqueous Electrolyte Solution
,”
Tribol. Trans.
,
41
(
1
), pp.
96
102
. 10.1080/10402009808983726
4.
Villanueva
,
J.
,
Trino
,
L.
,
Thomas
,
J.
,
Bijukumar
,
D.
,
Royhman
,
D.
,
Stack
,
M. M.
, and
Mathew
,
M. T.
,
2016
, “
Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature
,”
J. Bio. Tribo. Corros.
,
3
(
1
), pp.
1
8
. 10.1007/s40735-016-0060-1
5.
Alves
,
S. A.
,
Bayón
,
R.
,
de Viteri
,
V. S.
,
Garcia
,
M. P.
,
Igartua
,
A.
,
Fernandes
,
M. H.
, and
Rocha
,
L. A.
,
2015
, “
Tribocorrosion Behavior of Calcium- and Phosphorous-Enriched Titanium Oxide Films and Study of Osteoblast Interactions for Dental Implants
,”
J. Bio. Tribo. Corros.
,
1
(
23
), pp.
1
21
.
6.
Cao
,
S.
,
Guadalupe Maldonado
,
S.
, and
Mischler
,
S.
,
2015
, “
Tribocorrosion of Passive Metals in the Mixed Lubrication Regime: Theoretical Model and Application to Metal-on-Metal Artificial Hip Joints
,”
Wear
,
324–325
(
Supplement C
), pp.
55
63
. 10.1016/j.wear.2014.12.003
7.
Gracia-Escosa
,
E.
,
García
,
I.
,
Sánchez-López
,
J. C.
,
Abad
,
M. D.
,
Mariscal
,
A.
,
Arenas
,
M. A.
,
de Damborenea
,
J.
, and
Conde
,
A.
,
2015
, “
Tribocorrosion Behavior of TiBxCy/a-C Nanocomposite Coating in Strong Oxidant Disinfectant Solutions
,”
Surf. Coat. Technol.
,
263
, pp.
78
85
. 10.1016/j.surfcoat.2014.12.047
8.
Biedunkiewicz
,
A.
,
Figiel
,
P.
,
Biedunkiewicz
,
W.
,
Grzesiak
,
D.
,
Krawczyk
,
M.
, and
Stasiukiewicz
,
A.
,
2015
, “
Microstructure and Tribocorrosion Properties of Titanium Matrix Nanocomposites Manufactured by Selective Laser Sintering/Melting Method
,”
Solid State Phenomena
,
227
, pp.
247
250
. 10.4028/www.scientific.net/SSP.227.247
9.
Diomidis
,
N.
,
Celis
,
J. P.
,
Ponthiaux
,
P.
, and
Wenger
,
F.
,
2009
, “
A Methodology for the Assessment of the Tribocorrosion of Passivating Metallic Materials
,”
Lubr. Sci.
,
21
(
2
), pp.
53
67
. 10.1002/ls.73
10.
Krawiec
,
H.
,
Vignal
,
V.
,
Heintz
,
O.
,
Ponthiaux
,
P.
, and
Wenger
,
F.
,
2008
, “
Local Electrochemical Studies and Surface Analysis on Worn Surfaces
,”
J. Electrochem. Soc.
,
155
(
3
), pp.
C127
C130
. 10.1149/1.2830954
11.
Fairand
,
B. P.
, and
Clauer
,
A. H.
,
1979
, “
Laser Generation of High-Amplitude Stress Waves in Materials
,”
J. Appl. Phys.
,
50
(
3
), pp.
1497
1502
. 10.1063/1.326137
12.
Clauer
,
A. H.
, and
Fairand
,
B. P
,
1979
, “Interaction of Laser-Induced Stress Waves With Metals,”
Applications of Lasers in Materials Processing
,
E.
Metzbower
, ed.,
ASM International, Materials Park, OH
, Vol.
229
,
Washington, DC
.
13.
Ahmad
,
B.
, and
Fitzpatrick
,
M. E.
,
2015
, “
The Effect of Laser Shock Peening on Hardness and Microstructure in a Welded Marine Steel
,”
J. Eng. Inst. Eng. Technol.
,
2015
(
13
), pp.
115
125
. https://digital-library.theiet.org/content/journals/10.1049/joe.2015.0084
14.
Peyre
,
P.
, and
Fabbro
,
R.
,
1995
, “
Laser Shock Processing: A Review of the Physics and Applications
,”
Optical and Quantum Electronics
,
27
(
12
), pp.
1213
1229
.
15.
Bobzin
,
K.
, and
Bartels
,
T.
,
2011
,
Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication
,
John Wiley & Sons
,
Weinheim, Germany
, p.
429
.
16.
Fairand
,
B. P.
,
Wilcox
,
B. A.
,
Gallagher
,
W. J.
, and
Williams
,
D. N.
,
1972
, “
Laser Shock-Induced Microstructural and Mechanical Property Changes in 7075 Aluminum
,”
J. Appl. Phys.
,
43
(
9
), pp.
3893
3895
. 10.1063/1.1661837
17.
Clauer
,
A.
,
Fairand
,
B.
, and
Wilcox
,
B.
,
1977
, “
Pulsed Laser Induced Deformation in an Fe-3 Wt Pct Si Alloy
,”
Metall. Mater. Trans. A
,
8
(
1
), pp.
119
125
. 10.1007/BF02677273
18.
Clauer
,
A. H.
,
Fairand
,
B. P.
, and
Wilcox
,
B. A.
,
1977
, “
Laser Shock Hardening of Weld Zones in Aluminum Alloys
,”
Metall. Mater. Trans. A
,
8
(
12
), pp.
1871
1876
. 10.1007/BF02646559
19.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y.-W.
,
2002
, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
,
24
(
10
), pp.
1021
1036
. 10.1016/S0142-1123(02)00022-1
20.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
,
1996
, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng. A
,
210
(
1
), pp.
102
113
. 10.1016/0921-5093(95)10084-9
21.
Yakimets
,
I.
,
Richard
,
C.
,
Béranger
,
G.
, and
Peyre
,
P.
,
2004
, “
Laser Peening Processing Effect on Mechanical and Tribological Properties of Rolling Steel 100Cr6
,”
Wear
,
256
(
3–4
), pp.
311
320
. 10.1016/S0043-1648(03)00405-8
22.
Zhang
,
R.
,
Hou
,
X.
,
Zhou
,
X.
,
Gao
,
H.
,
Mankoci
,
S.
,
Qin
,
H.
,
Ren
,
Z.
,
Doll
,
G. L.
,
Martini
,
A.
,
Dong
,
Y.
,
Sahai
,
N.
, and
Ye
,
C.
,
2016
, “
Effects of Laser Shock Peening on the Wear and Degradation Behaviors of Magnesium Alloys
,”
Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
,
Blacksburg, VA
,
June 27–July 1
, p.
V002T01A005
. https://doi.org/10.1115/MSEC2016-8689
23.
Gujba
,
K. A.
, and
Medraj
,
M.
,
2014
, “
Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening
,”
Materials
,
7
(
12
), pp.
7925
7974
. 10.3390/ma7127925
24.
Ding
,
K.
, and
Ye
,
L.
,
2006
, “Laser Shock Peening,”
Laser Shock Peening: Performance and Process Simulation
,
Woodhead Publishing Limited
,
Boca Raton, FL
, pp.
7
43
.
25.
Shukla
,
P.
,
Nath
,
S.
,
Wang
,
G.
,
Shen
,
X.
, and
Lawrence
,
J.
,
2017
, “
Surface Property Modifications of Silicon Carbide Ceramic Following Laser Shock Peening
,”
J. Eur. Ceram. Soc.
,
37
(
9
), pp.
3027
3038
. 10.1016/j.jeurceramsoc.2017.03.005
26.
Lu
,
J. Z.
,
Wu
,
L. J.
,
Sun
,
G. F.
,
Luo
,
K. Y.
,
Zhang
,
Y. K.
,
Cai
,
J.
,
Cui
,
C. Y.
, and
Luo
,
X. M.
,
2017
, “
Microstructural Response and Grain Refinement Mechanism of Commercially Pure Titanium Subjected to Multiple Laser Shock Peening Impacts
,”
Acta Mater.
,
127
, pp.
252
266
. 10.1016/j.actamat.2017.01.050
27.
Kulkarni
,
A.
,
Chettri
,
S.
,
Prabhakaran
,
S.
, and
Kalainathan
,
S.
,
2017
, “
Effect of Laser Shock Peening Without Coating on Surface Morphology and Mechanical Properties of Nickel-200
,”
Mater. Sci. Eng. R.
,
9
(
2
), pp.
374
379
. https://mmse.xyz/en/mmse-journal-vol-9/effect-of-laser-shock-peening-without-coating-on-surface-morphology-and-mechanical-properties-of-nickel-200/
28.
Nalla
,
R. K.
,
Altenberger
,
I.
,
Noster
,
U.
,
Liu
,
G. Y.
,
Scholtes
,
B.
, and
Ritchie
,
R. O.
,
2003
, “
On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—On the Fatigue Behavior of Ti–6Al–4 V at Ambient and Elevated Temperatures
,”
Mater. Sci. Eng. A
,
355
(
1
), pp.
216
230
. 10.1016/S0921-5093(03)00069-8
29.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2018
, “
Surface Characterization and Tribological Performance of Laser Shock Peened Steel Surfaces
,”
Surf. Coat. Technol.
,
351
, pp.
188
197
. 10.1016/j.surfcoat.2018.07.087
30.
Ge
,
M.-Z.
, and
Xiang
,
J.-Y.
,
2016
, “
Effect of Laser Shock Peening on Microstructure and Fatigue Crack Growth Rate of AZ31B Magnesium Alloy
,”
J. Alloys Compd.
,
680
, pp.
544
552
. 10.1016/j.jallcom.2016.04.179
31.
Zhang
,
R.
,
Zhou
,
X.
,
Gao
,
H.
,
Mankoci
,
S.
,
Liu
,
Y.
,
Sang
,
X.
,
Qin
,
H.
,
Hou
,
X.
,
Ren
,
Z.
,
Doll
,
G. L.
,
Martini
,
A.
,
Dong
,
Y.
,
Sahai
,
N.
, and
Ye
,
C.
,
2018
, “
The Effects of Laser Shock Peening on the Mechanical Properties and Biomedical Behavior of AZ31B Magnesium Alloy
,”
Surf. Coat. Technol.
,
339
, pp.
48
56
. 10.1016/j.surfcoat.2018.02.009
32.
Brady
,
M. P.
,
Rother
,
G.
,
Anovitz
,
L. M.
,
Littrell
,
K. C.
,
Unocic
,
K. A.
,
Elsentriecy
,
H. H.
,
Song
,
G. L.
,
Thomson
,
J. K.
,
Gallego
,
N. C.
, and
Davis
,
B.
,
2015
, “
Film Breakdown and Nano-Porous Mg(OH)2 Formation From Corrosion of Magnesium Alloys in Salt Solutions
,”
J. Electrochem. Soc.
,
162
(
4
), pp.
C140
C149
. 10.1149/2.0171504jes
33.
Mordike
,
B. L.
, and
Ebert
,
T.
,
2001
, “
Magnesium: Properties—Applications—Potential
,”
Mater. Sci. Eng. A
,
302
(
1
), pp.
37
45
. 10.1016/S0921-5093(00)01351-4
34.
Ambat
,
R.
,
Aung
,
N. N.
, and
Zhou
,
W.
,
2000
, “
Studies on the Influence of Chloride Ion and pH on the Corrosion and Electrochemical Behaviour of AZ91D Magnesium Alloy
,”
J. Appl. Electrochem.
,
30
(
7
), pp.
865
874
. 10.1023/A:1004011916609
35.
Gao
,
L.
,
Zhang
,
C.
,
Zhang
,
M.
,
Huang
,
X.
, and
Sheng
,
N.
,
2009
, “
The Corrosion of a Novel Mg–11Li–3Al–0.5RE Alloy in Alkaline NaCl Solution
,”
J. Alloys Compd.
,
468
(
1
), pp.
285
289
. 10.1016/j.jallcom.2007.12.080
36.
Wu
,
T. C.
,
Ho
,
Y. H.
,
Joshi
,
S. S.
,
Rajamure
,
R. S.
, and
Dahotre
,
N. B.
,
2017
, “
Microstructure and Corrosion Behavior of Laser Surface-Treated AZ31B Mg bio-Implant Material
,”
Lasers Med. Sci.
,
32
(
4
), pp.
797
803
. 10.1007/s10103-017-2174-1
37.
Danford
,
M. D.
,
Mendrek
,
M. J.
,
Mitchell
,
M. L.
, and
Torres
,
P. D.
,
1997
, “
The Corrosion Protection of Magnesium Alloy AZ31B
”.
Metallic Materials, Doc. ID 19980006782, Report No. NASA/TP-97-206239, NAS 1.60:206239, M-841
,
NASA Marshall Space Flight Center
,
Huntsville, AL
.
38.
Azzi
,
M.
, and
Klemberg-Sapieha
,
J.-E.
,
2011
, “Tribocorrosion Test Protocols for Sliding Contacts,”
Tribocorrosion of Passive Metals and Coatings
,
Elsevier
,
New York
, pp.
222
238
.
39.
Kappes
,
M.
,
Iannuzzi
,
M.
, and
Carranza
,
R. M.
,
2014
, “
Pre-Exposure Embrittlement and Stress Corrosion Cracking of Magnesium Alloy AZ31B in Chloride Solutions
,”
Corrosion
,
70
(
7
), pp.
667
677
. 10.5006/1172
40.
Jafari
,
S.
,
Harandi
,
S. E.
, and
Singh Raman
,
R. K.
,
2015
, “
A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications
,”
JOM
,
67
(
5
), pp.
1143
1153
. 10.1007/s11837-015-1366-z
41.
Espallargas
,
N.
,
Johnsen
,
R.
,
Torres
,
C.
, and
Muñoz
,
A. I.
,
2013
, “
A New Experimental Technique for Quantifying the Galvanic Coupling Effects on Stainless Steel During Tribocorrosion Under Equilibrium Conditions
,”
Wear
,
307
(
1–2
), pp.
190
197
. 10.1016/j.wear.2013.08.026
42.
Williams
,
G.
, and
Neil McMurray
,
H.
,
2008
, “
Localized Corrosion of Magnesium in Chloride-Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique
,”
J. Electrochem. Soc.
,
155
(
7
), pp.
C340
C349
. 10.1149/1.2918900
43.
McNulty
,
R. E.
, and
Hanawalt
,
J. D.
,
1942
, “
Some Corrosion Characteristics of High Purity Magnesium Alloys
,”
Trans. Electrochem. Soc.
,
81
(
1
), pp.
423
433
. 10.1149/1.3071389
44.
Song
,
W.
,
Martin
,
H. J.
,
Hicks
,
A.
,
Seely
,
D.
,
Walton
,
C. A.
,
Lawrimore Ii
,
W. B.
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
,
2014
, “
Corrosion Behaviour of Extruded AM30 Magnesium Alloy Under Salt-Spray and Immersion Environments
,”
Corros. Sci.
,
78
, pp.
353
368
. 10.1016/j.corsci.2013.10.020
45.
Curioni
,
M.
,
2014
, “
The Behaviour of Magnesium During Free Corrosion and Potentiodynamic Polarization Investigated by Real-Time Hydrogen Measurement and Optical Imaging
,”
Electrochim. Acta
,
120
, pp.
284
292
. 10.1016/j.electacta.2013.12.109
46.
Cano
,
Z. P.
,
Kish
,
J. R.
, and
McDermid
,
J. R.
,
2016
, “
On the Evolution of Cathodic Activity During Corrosion of Magnesium Alloy AZ31B in a Dilute NaCl Solution
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
C62
C68
. 10.1149/2.0151603jes
47.
Cano
,
Z. P.
,
Danaie
,
M.
,
Kish
,
J. R.
,
McDermid
,
J. R.
,
Botton
,
G. A.
, and
Williams
,
G.
,
2014
, “
Physical Characterization of Cathodically-Activated Corrosion Filaments on Magnesium Alloy AZ31B
,”
Corrosion
,
71
(
2
), pp.
146
159
. 10.5006/1384
48.
Samaniego
,
A.
,
Llorente
,
I.
, and
Feliu
,
S.
, Jr.
,
2013
, “
Combined Effect of Composition and Surface Condition on Corrosion Behaviour of Magnesium Alloys AZ31 and AZ61
,”
Corros. Sci.
,
68
, pp.
66
71
. 10.1016/j.corsci.2012.10.034
49.
Mischler
,
S.
,
2008
, “
Triboelectrochemical Techniques and Interpretation Methods in Tribocorrosion: A Comparative Evaluation
,”
Tribol. Int.
,
41
(
7
), pp.
573
583
. 10.1016/j.triboint.2007.11.003
50.
Zhang
,
Y.
,
You
,
J.
,
Lu
,
J.
,
Cui
,
C.
,
Jiang
,
Y.
, and
Ren
,
X.
,
2010
, “
Effects of Laser Shock Processing on Stress Corrosion Cracking Susceptibility of AZ31B Magnesium Alloy
,”
Surf. Coat. Technol.
,
204
(
24
), pp.
3947
3953
. 10.1016/j.surfcoat.2010.03.015
51.
Wang
,
H.
,
Huang
,
Y.
,
Zhang
,
W.
, and
Ostendorf
,
A.
,
2018
, “
Investigation of Multiple Laser Shock Peening on the Mechanical Property and Corrosion Resistance of Shipbuilding 5083Al Alloy Under a Simulated Seawater Environment
,”
Appl. Opt
,
57
(
22
), pp.
6300
6308
. 10.1364/AO.57.006300
52.
Ge
,
M.-Z.
,
Xiang
,
J.-Y.
,
Yang
,
L.
, and
Wang
,
J. T.
,
2017
, “
Effect of Laser Shock Peening on the Stress Corrosion Cracking of AZ31B Magnesium Alloy in a Simulated Body Fluid
,”
Surf. Coat. Technol.
,
310
, pp.
157
165
. 10.1016/j.surfcoat.2016.12.093
53.
Qiao
,
H.
,
Zhao
,
J.
, and
Gao
,
Y.
,
2015
, “
Experimental Investigation of Laser Peening on TiAl Alloy Microstructure and Properties
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
609
616
. 10.1016/j.cja.2015.01.006
You do not currently have access to this content.