Abstract

The purpose of this study is to investigate the evolution of cavitation bubbles for the high-speed water-lubricated spiral groove thrust bearing. A theoretical model of cavitation bubble evolution considering multiple effects (interface, breakage, and coalescence of bubbles) was established for the bearing. A high-speed experimental setup was developed to measure the distribution of bubbles. The theoretical model is verified by the experimental data. The results show that the Boltzmann-type bubble transport equation can be used to describe the bubble evolution of the bearing under the breakup and coalescence at high-speed conditions; the volume of the bubble group presents a skewed distribution in equilibrium; the number of small-sized bubbles is greater than that of large-sized bubbles at high rotational speed; the bubbles are mainly distributed at the inlets and outlets of spiral grooves; the bubble number density increases with the groove depth and spiral angle; more bubbles are generated near the outer diameter of the bearing. The study provides a theoretical and experimental basis for the bubble evolution of the water-lubricated spiral groove bearing under high speeds.

References

1.
Murata
,
S.
,
1979
, “
Exact Two-Dimensional Analysis of Circular Disk Spiral-Groove Bearing
,”
ASME J. Tribol.
,
101
(
4
), pp.
424
430
.
2.
Elrod
,
H. G.
,
1973
, “
Some Refinements of the Theory of the viscous Screw Pump
,”
ASME J. Tribol.
,
95
(
1
), pp.
82
93
.
3.
Muijderman
,
E. A.
,
1966
,
Spiral Groove Bearings
,
Springer-Verlag
,
New York
.
4.
Gohara
,
M.
,
Somaya
,
K.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2014
, “
Static Characteristics of a Water-Lubricated Hydrostatic Thrust Bearing Using a Membrane Restrictor
,”
Tribol. Int.
,
75
, pp.
111
116
.
5.
Wang
,
Y.
,
Yin
,
Z.
,
Gao
,
G.
, and
Zhang
,
X.
,
2017
, “
Analysis of the Performance of Worn Hydrodynamic Water-Lubricated Plain Journal Bearings Considering Cavitation and Elastic Deformation
,”
Mech. Ind.
,
18
(
5
),
508
.
6.
Huang
,
B.
, and
Wang
,
G. Y.
,
2011
, “
A Modified Density Based Cavitation Model for Time Dependent Turbulent Cavitating Flow Computations
,”
Chin. Sci. Bull.
,
56
(
19
), pp.
1985
1992
.
7.
Yoshimoto
,
S.
,
Anno
,
Y.
,
Tamura
,
M.
,
Kakiuchi
,
Y.
, and
Kimura
,
K.
,
1965
, “
Axial Load Carrying Capacity of Water-Lubricated Hydrostatic Conical Bearings With Spiral Grooves (on the Case of Rigid Surface Bearings)
,”
Trans. ASME
,
118
(
4
), pp.
893
899
.
8.
Yoshimoto
,
S.
,
Oshima
,
S.
,
Danbara
,
S.
, and
Shitara
,
T.
,
2002
, “
Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles
,”
Trans. ASME
,
124
(
2
), pp.
398
405
.
9.
Xiu
,
L. Z.
,
Zhong
,
W. Y.
, and
Dan
,
J.
,
2014
, “
The Design of Hydrodynamic Water-Lubricated Step Thrust Bearings Using CFD Method
,”
Mech. Ind.
,
15
(
3
), pp.
197
206
.
10.
Lin
,
X. H.
,
Jiang
,
S. Y.
,
Zhang
,
C. B.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
.
11.
Ni
,
J.
,
Wang
,
G.
, and
Zhang
,
H.
,
1991
,
The Basic Theory of Solid Liquid Two-Phase Flow and Its Latest Applications
,
Science Press
,
Beijing, China
, pp.
35
52
.
12.
Guo
,
L.
,
2002
,
Two-Phase and Multiphase Flow Dynamics
,
Xi’an Jiaotong University Press
,
Xi’an, China
, p.
430
.
13.
Günter
,
H. S.
, and
Jürgen
,
S.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
4th International Conference on Multiphase Flow
,
New Orleans, LA
,
May 27–June 1
.
14.
Lehr
,
F.
, and
Mewes
,
D.
,
2001
, “
A Transport Equation for Interfacial Area Density Applied to Bubble Columns
,”
Chem. Eng. Sci.
,
56
, pp.
1159
1166
.
15.
Yi
,
X. L.
, and
Dirk
,
L.
,
2010
, “
A Literature Review on Mechanisms and Models for the Coalescence Process of Fluid Particles
,”
Chem. Eng. Sci.
,
65
, pp.
2851
2864
.
16.
Ho
,
C. T.
, and
Chen
,
L. H.
,
1995
, “
A Fast Ellipse/Circle Detector Using Geometric Symmetry
,”
Pattern Recognit.
,
28
(
1
), pp.
117
124
.
17.
Zhang
,
W. H.
,
Jiang
,
X.
, and
Liu
,
Y. M.
,
2012
, “
A Method for Recognizing Overlapping Elliptical Bubbles in Bubble Image
,”
Pattern Recognit. Lett.
,
33
(
12
), pp.
1543
1548
.
18.
Hahn
,
K.
,
Jung
,
S.
,
Han
,
Y.
, and
Hahn
,
H.
,
2008
, “
A New Algorithm for Ellipse Detection by Curve Segments
,”
Pattern Recognit. Lett.
,
29
(
13
), pp.
1836
1841
.
19.
Jain
,
A. K.
,
2010
, “
Data Clustering: 50 Years Beyond K-means
,”
Pattern Recognit. Lett.
,
31
(
8
), pp.
651
666
.
You do not currently have access to this content.