The mechanical properties of crystalline phase of glass ceramics are critical. This study aimed to evaluate wear resistance of different crystalline-reinforced dental chairside computer-aided design/computer-aided manufacturing (CAD/CAM) glass ceramics. Materials of feldspar (Vita Mark II, VM), leucite (IPS Empress CAD, EC), lithium disilicate (IPS e.max CAD, EX), lithium disilicate enriched with zirconia (Vita Suprinity, VS), and enamel were embedded, grounded, and polished, respectively. Samples were indented with a Vickers hardness tester to test the fracture resistance (KIC). Two-body wear tests were performed in a reciprocal ball-on-flat configuration under artificial saliva. The parameters of load force (50 N), reciprocating amplitude (500 μm), frequency (2 Hz), and the test cycle (10,000 cycles) were selected. Specimen microstructure, indentation morphology, and wear scars were observed by scanning electron microscope (SEM), optical microscopy, and three-dimensional profile microscopy. EX, VS, and EC demonstrated significantly higher KIC values than the enamel, while ceramic materials showed smaller wear depth results. Cracks, massive delamination, and shallow plow were seen on the enamel worn scar. Long deep plow, delamination, and brittle cracks are more common for VM and EC, and short shallow plow and smooth subsurface are the characteristics of EX and VS. Greater fracture toughness values indicated higher wear resistances of the materials for the test glass ceramics. The CAD/CAM glass ceramics performed greater wear resistance than enamel. Feldspar- and leucite-reinforced glass ceramics illustrated better wear resistance similar to enamel than lithium disilicate glass ceramics, providing amicable matching with the opposite teeth.

References

1.
Anusavice
,
K. J.
,
2012
, “
Standardizing Failure, Success, and Survival Decisions in Clinical Studies of Ceramic and Metal–Ceramic Fixed Dental Prostheses
,”
Dent. Mater.
,
28
(
1
), pp.
102
111
.
2.
Höland
,
W.
,
Rheinberger
,
V. M.
,
Apel
,
E.
,
van't Hoen
,
C.
,
Höland
,
M.
,
Dommann
,
A.
,
Obrecht
,
M.
,
Mauth
,
C.
, and
Graf-Hausner
,
U.
,
2006
, “
Clinical Application of Glass-Ceramics in Dentistry
,”
J. Mater. Sci.-Mater. Med.
,
17
(
11
), pp.
1037
1042
.
3.
Li
,
R. W. K.
,
Chow
,
T. W.
, and
Matinlinna
,
J. P.
,
2014
, “
Ceramic Dental Biomaterials and CAD/CAM Technology: State of the Art
,”
J. Prosthodont. Res
,
58
(
4
), pp.
208
216
.
4.
Heffernan
,
M. J.
,
Aquilino
,
S. A.
,
Diaz-Arnold
,
A. M.
,
Haselton
,
D. R.
,
Stanford
,
C. M.
, and
Vargas
,
M. A.
,
2002
, “
Relative Translucency of Six All Ceramic Systems—Part II: Core and Veneer Materials
,”
J. Prosthet. Dent.
,
88
(
1
), pp.
10
15
.
5.
Kelly
,
J. R.
, and
Benetti
,
P.
,
2011
, “
Ceramic Materials in Dentistry: Historical Evolution and Current Practice
,”
Aust. Dent. J.
,
56
, pp.
84
96
.
6.
Zimmer
,
S.
,
Gohlich
,
O.
, and
Ruttermann
,
S.
,
2008
, “
Long-Term Survival of Cerec Restorations: A 10-Year Study
,”
Oper. Dent.
,
33
(
5
), pp.
484
487
.
7.
Figueiredo-Pina
,
C. G.
,
Patas
,
N.
,
Canhoto
,
J.
,
Cláudio
,
R.
,
Olhero
,
S. M.
,
Serro
,
A. P.
,
Ferro
,
A. C.
, and
Guedes
,
M.
,
2016
, “
Tribological Behaviour of Unveneered and Veneered Lithium Disilicate Dental Material
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
226
238
.
8.
Chu
,
F. C.
,
Chow
,
T. W.
,
Chai
,
J.
, and
Liang
,
B. M.
,
2007
, “
Chemical Solubility and Flexural Strength of Zirconia-Based Ceramics
,”
Int. J. Prosthodontics
,
20
(
6
), pp.
587
595
.
9.
Tysowsky
,
G. W.
,
2009
, “
The Science Behind Lithium Disilicate: A Metal-Free Alternative
,”
Dent. Today
,
28
(
3
), pp.
112
113
.
10.
Elmaria
,
A.
,
Goldstein
,
G.
,
Vijayaraghavan
,
T.
,
Legeros
,
R. Z.
, and
Hittelman
,
E. L.
,
2006
, “
An Evaluation of Wear When Enamel Is Opposed by Various Ceramic Materials and Gold
,”
J. Prosthet. Dent.
,
96
(
5
), pp.
345
353
.
11.
Wang
,
L.
,
Liu
,
Y.
,
Si
,
W.
,
Feng
,
H.
,
Tao
,
Y.
, and
Ma
,
Z.
,
2012
, “
Friction and Wear Behaviors of Dental Ceramics Against Natural Tooth
,”
J. Eur. Ceram. Soc.
,
32
(
11
), pp.
2599
2606
.
12.
Chen
,
X.
,
Chadwick
,
T. C.
,
Wilson
,
R. M.
,
Hill
,
R. G.
, and
Cattell
,
M. J.
,
2011
, “
Crystallization and Flexural Strength Optimization of Fine-Grained Leucite Glass-Ceramics for Dentistry
,”
Dent. Mater.
,
27
(
11
), pp.
1153
1161
.
13.
Theocharopoulos
,
A.
,
Chen
,
X.
,
Wilson
,
R. M.
,
Hill
,
R.
, and
Cattell
,
M. J.
,
2013
, “
Crystallization of High-Strength Nano-Scale Leucite Glass-Ceramics
,”
Dent. Mater.
,
29
(
11
), pp.
1149
1157
.
14.
Lohbauer
,
U.
,
Müller
,
F. A.
, and
Petschelt
,
A.
,
2008
, “
Influence of Surface Roughness on Mechanical Strength of Resin Composite Versus Glass Ceramic Materials
,”
Dent. Mater.
,
24
(
2
), pp.
250
256
.
15.
Lawson
,
N. C.
,
Bansal
,
R.
, and
Burgess
,
J. O.
,
2016
, “
Wear, Strength, Modulus and Hardness of CAD/CAM Restorative Materials
,”
Dent. Mater.
,
32
(
11
), pp.
e275
e283
.
16.
Addison
,
O.
,
Cao
,
X.
,
Sunnar
,
P.
, and
Fleming
,
G. J. P.
,
2012
, “
Machining Variability Impacts on the Strength of a ‘Chair-Side’ CAD–CAM Ceramic
,”
Dent. Mater.
,
28
(
8
), pp.
880
887
.
17.
Aurélio
,
I. L.
,
Fraga
,
S.
,
Dorneles
,
L. S.
,
Bottino
,
M. A.
, and
May
,
L. G.
,
2015
, “
Extended Glaze Firing Improves Flexural Strength of a Glass Ceramic
,”
Dent. Mater.
,
31
(
12
), pp.
e316
e324
.
18.
Kim
,
M. J.
,
Oh
,
S. H.
,
Kim
,
J. H.
,
Ju
,
S. W.
,
Seo
,
D. G.
,
Jun
,
S. H.
,
Ahn
,
J. S.
, and
Ryu
,
J. J.
,
2012
, “
Wear Evaluation of the Human Enamel Opposing Different Y-TZP Dental Ceramics and Other Porcelains
,”
J. Dent.
,
40
(
11
), pp.
979
988
.
19.
Giordano
,
R.
, and
McLaren
,
E. A.
,
2010
, “
Ceramics Overview: Classification by Microstructure and Processing Methods
,”
Compend. Contin. Educ. Dent.
,
31
(9), pp.
682
688
.
20.
Heintze
,
S. D.
,
Cavalleri
,
A.
,
Forjanic
,
M.
,
Zellweger
,
G.
, and
Rousson
,
V.
,
2008
, “
Wear of Ceramic and Antagonist—A Systematic Evaluation of Influencing Factors In Vitro
,”
Dent. Mater.
,
24
(
4
), pp.
433
449
.
21.
Coldea
,
A.
,
Swain
,
M. V.
, and
Thiel
,
N.
,
2013
, “
Mechanical Properties of Polymer-Infiltrated-Ceramic-Network Materials
,”
Dent. Mater.
,
29
(
4
), pp.
419
426
.
22.
Niihara
,
Morena
,
R.
, and
Hasselman
,
D. P. H.
,
1982
, “
Evaluation of KIC of Brittle Solids by the Indentation Method With Low Crack to Indent Ratios
,”
J. Mater. Sci. Lett.
,
1
(
1
), pp.
13
16
.
23.
Zheng
,
J.
,
Zeng
,
Y.
,
Wen
,
J.
,
Zheng
,
L.
, and
Zhou
,
Z.
,
2016
, “
Impact Wear Behavior of Human Tooth Enamel Under Simulated Chewing Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
119
127
.
24.
Ferrario
,
V. F.
,
Sforza
,
C.
,
Zanotti
,
G.
, and
Tartaglia
,
G. M.
,
2004
, “
Maximal Bite Forces in Healthy Young Adults as Predicted by Surface Electromyography
,”
J. Dent.
,
32
(
6
), pp.
451
457
.
25.
Gao
,
S.
,
Gao
,
S. S.
,
Xu
,
B.
, and
Yu
,
H. Y.
,
2015
, “
Effects of Different pH-Values on the Nanomechanical Surface Properties of PEEK and CFR-PEEK Compared to Dental Resin-Based Materials
,”
Materials
,
8
(
8
), pp.
4751
4767
.
26.
Mehta
,
S. B.
,
Banerji
,
S.
,
Millar
,
B. J.
, and
Suarezfeito
,
J. M.
,
2012
, “
Current Concepts on the Management of Tooth Wear—Part 4. An Overview of the Restorative Techniques and Dental Materials Commonly Applied for the Management of Tooth Wear
,”
Br. Dent. J.
,
212
, pp.
17
27
.
27.
Xu
,
Z.
,
Yu
,
P.
,
Arola
,
D. D.
,
Min
,
J.
, and
Gao
,
S. S.
,
2017
, “
A Comparative Study on the Wear Behavior of a Polymer Infiltrated Ceramic Network (PICN) Material and Tooth Enamel
,”
Dent. Mater.
,
33
(
12
), pp.
1351
1361
.
28.
Bechtle
,
S.
,
Ozcoban
,
H.
,
Lilleodden
,
E. T.
,
Huber
,
N.
,
Schreyer
,
A.
,
Swain
,
M. V.
, and
Schneider
,
G. A.
,
2012
, “
Hierarchical Flexural Strength of Enamel: Transition From Brittle to Damage-Tolerant Behavior
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1265
1274
.
29.
Oh
,
W.
,
Delong
,
R.
, and
Anusavice
,
K.
,
2002
, “
Factors Affecting Enamel and Ceramic Wear: A Literature Review
,”
J. Prosthet. Dent.
,
87
(
4
), pp.
451
459
.
30.
Min
,
J.
,
Zhang
,
Q. Q.
,
Qiu
,
X. L.
,
Zhu
,
M.
,
Yu
,
H. Y.
, and
Gao
,
S. S.
,
2015
, “
Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains
,”
PLoS One
,
10
(
9
), p.
e0137566
.
31.
Seghi
,
R. R.
,
Rosenstiel
,
S. F.
, and
Bauer
,
P.
,
1991
, “
Abrasion of Human Enamel by Different Dental Ceramics In Vitro
,”
J. Dent. Res.
,
70
(
3
), pp.
221
225
.
32.
Scherrer
,
S. S.
,
Denry
,
L. L.
, and
Wiskott
,
A. H. W.
,
1998
, “
Comparison of Three Fracture Toughness Testing Techniques Using a Dental Glass and a Dental Ceramic
,”
Dent. Mater.
,
14
(
4
), pp.
246
255
.
33.
Fisher
,
H.
, and
Mars
,
R.
,
2002
, “
Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method
,”
Dent. Mater.
,
18
, pp.
12
19
.
34.
Zhang
,
Q. Q.
,
Gao
,
S. S.
,
Min
,
J.
,
Yu
,
D. D.
, and
Yu
,
H. Y.
,
2016
, “
Graded Viscoelastic Behavior of Human Enamel by Nanoindentation
,”
Mater. Lett.
,
179
, pp.
126
129
.
35.
Hu
,
S. F.
,
Chen
,
Z.
, and
Mecholsky
,
J. J.
,
1996
, “
On the Hertzian Fatigue Cone Crack Propagation in Ceramics
,”
Int. J. Fract.
,
79
(
3
), pp.
295
307
.
36.
Gao
,
S. S.
,
An
,
B. B.
,
Yahyazadehfar
,
M.
,
Zhang
,
D. S.
, and
Arola
,
D. D.
,
2016
, “
Contact Fatigue of Human Enamel: Experiments, Mechanisms and Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
438
450
.
37.
Ren
,
L. L.
, and
Zhang
,
Y.
,
2014
, “
Sliding Contact Fracture of Dental Ceramics: Principles and Validation
,”
Acta. Biomater.
,
10
(
7
), pp.
3243
3253
.
You do not currently have access to this content.