Lapping is still an efficient and economical way in diamond shaping process, which is important in both industrial and scientific applications. It has been known that the material removal originates from the phase change or amorphization of diamond crystal carbon atoms that are chemically activated by stress, forming a top layer of amorphous carbon atoms. In this paper, the phase change of amorphous carbon atoms undergoing the nanocutting of amorphous layer during diamond lapping process is studied by molecular dynamics (MD) simulation. Two regions, the debris layer and cutting surface underneath, are studied. In the debris layer, the change of sp2 carbon atoms is directly affected by impact, while underneath the cutting surface the changes of carbon atoms are almost not affected; the change speed of amorphous carbon atoms is higher than that of pristine crystal ones; the main phase change is transformation of sp3 into sp2; cutting depth to different extent affects the phase changes of sp3 and sp2 carbon atoms. Our study expands the understanding of diamond lapping process.

References

1.
Schuelke
,
T.
, and
Grotjohn
,
T. A.
,
2013
, “
Diamond Polishing
,”
Diamond Relat. Mater.
,
32
(
2
), pp.
17
26
.
2.
Tolkowsky
,
M.
,
1920
, “
Research on the Abrading, Grinding or Polishing of Diamond
,” Ph.D. thesis, University of London, London.
3.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1965
,
Physical Properties of Diamond
,
Clarendon Press
,
Oxford, UK
.
4.
Brezoczky
,
B.
, and
Seki
,
H.
,
1990
, “
Triboattraction: Friction Under Negative Load
,”
Langmuir
,
6
(
6
), pp.
1141
1145
.
5.
Couto
,
M.
,
Van Enekevort
,
W. J. P.
,
Wichman
,
B.
, and
Seal
,
M.
,
1992
, “
Scanning Tunneling Microscopy of Polished Diamond Surfaces
,”
Appl. Surf. Sci.
,
62
(
4
), pp.
263
268
.
6.
Jarvis
,
M. R.
,
Perez
,
R.
,
Van Bouwelen
,
F. M.
, and
Payne
,
M. C.
,
1998
, “
Microscopic Mechanism for Mechanical Polishing of Diamond (110) Surfaces
,”
Phys. Rev. Lett.
,
80
(
16
), pp.
3428
3431
.
7.
Gogotsi
,
Y. G.
,
Kailer
,
A.
, and
Nickel
,
K. G.
,
1999
, “
Materials: Transformation of Diamond to Graphite
,”
Nature
,
401
(
6754
), pp.
663
664
.
8.
Pastewka
,
L.
,
Moser
,
S.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2011
, “
Anisotropic Mechanical Amorphization Drives Wear in Diamond
,”
Nat. Mater.
,
10
(
1
), pp.
34
38
.
9.
Beyer
,
M. K.
, and
Clausen-Schaumann
,
H.
,
2005
, “
Mechanochemistry: The Mechanical Activation of Covalent Bonds
,”
Chem. Rev.
,
105
(
8
), pp.
2921
2948
.
10.
Tabor
,
D.
, and
Field
,
J. E.
,
1992
,
The Properties of Natural and Synthetic Diamond
,
Academic Press
,
London
.
11.
van Bouwelen
,
F. M.
,
Field
,
J. E.
, and
Brown
,
L. M.
,
2003
, “
Electron Microscopy Analysis of Debris Produced During Diamond Polishing
,”
Philos. Mag.
,
83
(
7
), pp.
839
855
.
12.
Cai
,
M. B.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Tay
,
A. A. O.
,
2007
, “
Crack Initiation in Relation to the Tool Edge Radius and Cutting Conditions in Nanoscale Cutting of Silicon
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
562
569
.
13.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), pp.
783
802
.
14.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.
15.
Gao
,
G.
,
Cannara
,
R. J.
,
Carpick
,
R. W.
, and
Harrison
,
J. A.
,
2007
, “
Atomic-Scale Friction on Diamond: A Comparison of Different Sliding Directions on (001) and (111) Surfaces Using MD and AFM
,”
Langmuir
,
23
(
10
), pp.
5394
5405
.
16.
Ma
,
T. B.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2009
, “
Molecular Dynamics Simulation of Shear-Induced Graphitization of Amorphous Carbon Films
,”
Carbon
,
47
(
8
), pp.
1953
1957
.
17.
Pastewka
,
L.
,
Pou
,
P.
,
Pérez
,
R.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2008
, “
Describing Bond-Breaking Processes by Reactive Potentials: Importance of an Environment-Dependent Interaction Range
,”
Phys. Rev. B
,
78
(
16
), p.
161402
.
18.
Khomenko
,
A. V.
, and
Prodanov
,
N. V.
,
2010
, “
Molecular Dynamics of Cleavage and Flake Formation During the Interaction of a Graphite Surface With a Rigid Nanoasperity
,”
Carbon
,
48
(
4
), pp.
1234
1243
.
19.
Gamboa
,
A.
,
Vignoles
,
G. L.
, and
Leyssale
,
J. M.
,
2015
, “
On the Prediction of Graphene's Elastic Properties With Reactive Empirical Bond Order Potentials
,”
Carbon
,
89
, pp.
176
187
.
20.
Zybin
,
S. V.
,
Elert
,
M. L.
, and
White
,
C. T.
,
2002
, “
Orientation Dependence of Shock-Induced Chemistry in Diamond
,”
Phys. Rev. B
,
66
(
22
), p.
220102
.
21.
Brukman
,
M. J.
,
Gao
,
G.
,
Nemanich
,
R. J.
, and
Harrison
,
J. A.
,
2008
, “
Temperature Dependence of Single-Asperity Diamond−Diamond Friction Elucidated Using AFM and MD Simulations
,”
J. Phys. Chem. C
,
112
(
25
), pp.
9358
9369
.
22.
Yuan
,
J.
, and
Liew
,
K. M.
,
2009
, “
The Effects of Grafted Amine Groups on the Elastic Properties of Single-Walled Carbon Nanotubes
,”
Carbon
,
47
(
3
), pp.
713
721
.
23.
Hird
,
J. R.
, and
Field
,
J. E.
,
2004
, “
Diamond Polishing
,”
Proc. R. Soc. Lond. A
,
460
(
2052
), pp.
3547
3568
.
24.
Yang
,
N.
,
Zong
,
W. J.
,
Li
,
Z. Q.
, and
Sun
,
T.
,
2014
, “
Amorphization Anisotropy and the Internal of Amorphous Layer in Diamond Nanoscale Friction
,”
Comp. Mater. Sci.
,
95
, pp.
551
556
.
25.
Feng
,
Z.
, and
Field
,
J. E.
,
1992
, “
The Friction and Wear of Diamond Sliding on Diamond
,”
J. Phys. D
,
25
(
1A
), pp.
33
37
.
26.
Grillo
,
S.
, and
Field
,
J. E.
,
1997
, “
The Polishing of Diamond
,”
J. Phys. D
,
30
(
2
), pp.
202
209
.
27.
van Bouwelen
,
F. M.
,
Bleloch
,
A. L.
,
Field
,
J. E.
, and
Brown
,
L. M.
,
1996
, “
Wear by Friction Between Diamonds Studied by Electron Microscopical Techniques
,”
Diamond Relat. Mater.
,
5
(
6–8
), pp.
654
657
.
28.
van Bouwelen
,
F. M.
,
Brown
,
L. M.
, and
Field
,
J. E.
,
1993
, “
A STEM/PEELS-Study of Debris Produced by Friction of a Diamond Stylus on CVD Diamond
,”
Electron Microscopy and Analysis 1993. The Institute of Physics Electron and Analysis Group Conference
, Liverpool, UK, Sept. 14–17, pp.
365
368
.
29.
Casari
,
C. S.
,
Li Bassi
,
A.
,
Ravagnan
,
L.
,
Siviero
,
F.
,
Lenardi
,
C.
,
Piseri
,
P.
,
Bongiorno
,
G.
,
Bottani
,
C. E.
, and
Milani
,
P.
,
2004
, “
Chemical and Thermal Stability of Carbyne-Like Structures in Cluster-Assembled Carbon Films
,”
Phys. Rev. B
,
69
(
7
), p.
075422
.
You do not currently have access to this content.