The solution of the elastohydrodynamic lubrication (EHL) problem involves the simultaneous resolution of the hydrodynamic (Reynolds equation) and elastic problems (elastic deformation of the contacting surfaces). Up to now, most of the numerical works dealing with the modeling of the isothermal EHL problem were based on a weak coupling resolution of the Reynolds and elasticity equations (semi-system approach). The latter were solved separately using iterative schemes and a finite difference discretization. Very few authors attempted to solve the problem in a fully coupled way, thus solving both equations simultaneously (full-system approach). These attempts suffered from a major drawback which is the almost full Jacobian matrix of the nonlinear system of equations. This work presents a new approach for solving the fully coupled isothermal elastohydrodynamic problem using a finite element discretization of the corresponding equations. The use of the finite element method allows the use of variable unstructured meshing and different types of elements within the same model which leads to a reduced size of the problem. The nonlinear system of equations is solved using a Newton procedure which provides faster convergence rates. Suitable stabilization techniques are used to extend the solution to the case of highly loaded contacts. The complexity is the same as for classical algorithms, but an improved convergence rate, a reduced size of the problem and a sparse Jacobian matrix are obtained. Thus, the computational effort, time and memory usage are considerably reduced.

1.
Oh
,
K. P.
, and
Rohde
,
S. M.
, 1977, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
, pp.
1507
1518
.
2.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
, 2003, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflexion Method. Part 1: Theory and Validation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
(
J
), pp.
289
303
.
3.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
, 1986, “
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
0742-4787,
108
(
4
), pp.
551
558
.
4.
Venner
,
C. H.
, 1991, “
Multilevel Solution of the EHL Line and Point Contact Problems
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
5.
Xu
,
G.
,
Nickel
,
D. A.
,
,
F.
, and
Ai
,
X.
, 1996, “
Elastoplastohydrodynamic Lubrication With Dent Effects
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
210
(
J
), pp.
233
245
.
6.
Brandt
,
A.
, and
Lubrecht
,
A. A.
, 1990, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
0021-9991,
90
(
2
), pp.
348
370
.
7.
Reynolds
,
O.
, 1886, “
On the Theory of the Lubrication and its Application to Mr Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
0370-2316,
177
, pp.
157
234
.
8.
Dowson
,
D.
, and
Higginson
,
G. R.
, 1966,
Elastohydrodynamic Lubrication. The Fundamental of Roller and Gear Lubrication
,
Pergamon
,
Oxford
.
9.
Cook
,
R. L.
,
King
,
H. E.
,
Herbst
,
C. A.
, and
Herschback
,
D. R.
, 1994, “
Pressure and Temperature Dependent Viscosity of Two Glass Forming Liquids: Glycerol and Dibutyl Phthalate
,”
J. Chem. Phys.
0021-9606,
100
(
7
), pp.
5178
5189
.
10.
Jacobson
,
B. O.
, and
Vinet
,
P.
, 1987, “
A Model for the Influence of Pressure on the Bulk Modulus and the Influence of Temperature on the Solidification Pressure for Liquid Lubricants
,”
ASME J. Tribol.
0742-4787,
109
, pp.
709
714
.
11.
Barus
,
C.
, 1893, “
Isothermals, Isopiestics, and Isometrics Relative to Viscosity
,”
Am. J. Sci.
0002-9599,
45
, pp.
87
96
.
12.
Roelands
,
C. J. A.
, 1966, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technische Hogeschool, Delft, The Netherlands.
13.
Yasutomi
,
S.
,
Bair
,
S.
, and
Winer
,
W. O.
, 1984, “
An Application of a Free-Volume Model to Lubricant Rheology, (1) Dependence of Viscosity on Temperature and Pressure
,”
ASME J. Tribol.
0742-4787,
106
, pp.
291
312
.
14.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline-Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
15.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
, 1989, “
A New Finite Element Formulation for Computational Fluid Dynamics: VII. The Galerkin-Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
73
, pp.
173
189
.
16.
Hughes
,
T. J. R.
, 1995, “
Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
387
401
.
17.
Galeão
,
A. C.
,
Almeida
,
R. C.
,
Malta
,
S. M. C.
, and
Loula
,
A. F. D.
, 2004, “
Finite Element Analysis of Convection Dominated Reaction-Diffusion Problems
,”
Appl. Numer. Math.
0168-9274,
48
, pp.
205
222
.
18.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method, Fluid Dynamics
, 5th ed.
Butterworth-Heinemann
,
Oxford
, Vol.
3
.
19.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
, 2000,
Multilevel Methods in Lubrication
, (
Tribology Series
Vol.
37
),
Elsevier
,
Amsterdam
.
20.
Huebner
,
K. H.
,
Dewhirst
,
D. L.
,
Smith
,
D. E.
, and
Byrom
,
T. G.
, 2001,
The Finite Element Method for Engineers, Fourth Edition
,
Wiley-IEEE
,
New York
.
21.
Booker
,
J. F.
, and
Huebner
,
K. H.
, 1972, “
Application of Finite Element Methods to Lubrication: An Engineering Approach
,”
ASME J. Lubr. Technol.
0022-2305,
94
, pp.
313
323
.