A ball and disk apparatus was used to investigate the lubricant replenishment of an elastohydrodynamically lubricated point contact. This replenishment of the contact is crucial for building up a lubricating film. Whereas lubricating oil manages to achieve replenishment, lubricating grease appears not to achieve this, with lubricant starvation and a dramatic decrease in film thickness as a result. The distribution of grease around the contact was studied using normal and high-speed video. The movements of grease in the vicinity of the contact could be seen by adding molybdenum disulfide particles to the grease. A recording was then made, using highspeed video recording. The overall cavitation regions were studied using an ordinary video camera and grease without particles. On the basis of the results, possible lubricating grease replenishment mechanisms are discussed. The resulting film thickness was also compared with theoretical predictions using the Hamrock and Dowson starvation criterion, assuming negligible replenishment. The measured film thickness was larger than the predicted, which indicated that some replenishment occurs. In the case of an ordinary thrust ball bearing, replenishment was found to rely on the spin motion of the balls.

This content is only available via PDF.
You do not currently have access to this content.