Abstract

In this article, the use of gas as a working fluid in the parabolic trough receiver (PTR) has been investigated numerically. The present study aims to determine which gas will work best as a heat transfer fluid (HTF) by analyzing the impact of several gases on the PTR’s performance. So, gases, such as carbon dioxide, helium, nitrogen, oxygen, hydrogen, methane, neon, and air, are considered in the present study, which flow through a thick-wall stainless steel pipe under a laminar flow regime. The temperature-dependent thermo-physical properties of the gas are considered. The finite difference method (FDM) with the harmonic mean technique is employed to solve this conjugate heat transfer problem. The current research findings are verified with those reported in the literature and are in excellent agreement. The grid-independent study is conducted to choose the optimal grid size. After that, the multi-objective function optimization technique and performance enhancement factor (PEF) is used to select the best suitable HTF, and it found that hydrogen gas is most appropriate based on these two criteria. Then, the influence of various parametric studies such as Reynolds number, solar flux, and receiver pipe thickness on the Nusselt number has been carried out. It is found that the Nusselt number increases with the Reynolds number while it decreases with solar flux and receiver pipe thickness. The significance of the current study may aid in choosing the appropriate gas as HTF in the parabolic trough solar collector (PTSC).

References

1.
Ram
,
M.
,
Child
,
M.
,
Aghahosseini
,
A.
,
Bogdanov
,
D.
,
Lohrmann
,
A.
, and
Breyer
,
C.
,
2018
, “
A Comparative Analysis of Electricity Generation Costs From Renewable, Fossil Fuel and Nuclear Sources in G20 Countries for the Period 2015-2030
,”
J. Clean. Prod.
,
199
, pp.
687
704
.
2.
Höök
,
M.
, and
Tang
,
X.
,
2013
, “
Depletion of Fossil Fuels and Anthropogenic Climate Change-A Review
,”
Energy Pol.
,
52
, pp.
797
809
.
3.
Dalvi
,
V. H.
,
Panse
,
S. V.
, and
Joshi
,
J. B.
,
2015
, “
Solar Thermal Technologies as a Bridge From Fossil Fuels to Renewables
,”
Nat. Clim. Change
,
5
(
11
), pp.
1007
1013
.
4.
Tripathi
,
L.
,
Mishra
,
A. K.
,
Kumar
,
A.
,
Tripathi
,
C. B.
, and
Baredar
,
P.
,
2016
, “
Renewable Energy : An Overview on Its Contribution in Current Energy Scenario of India
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
226
233
.
5.
Kabir
,
E.
,
Kumar
,
P.
,
Kumar
,
S.
,
Adelodun
,
A. A.
, and
Kim
,
K.
,
2018
, “
Solar Energy: Potential and Future Prospects
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
894
900
.
6.
Korres
,
D.
,
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Investigation of a Nanofluid-Based Compound Parabolic Trough Solar Collector Under Laminar Flow Conditions
,”
Appl. Therm. Eng.
,
149
, pp.
366
376
.
7.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Progress in Energy Comb. Sci.
,
30
(
3
), pp.
231
295
.
8.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
9.
Moya
,
E. Z.
,
2017
, “Innovative Working Fluids for Parabolic Trough Collectors,”
Advances in Concentrating Solar Thermal Research and Technology
, M. J. Blanco and L. R. Santigosa, eds.,
Woodhead Publishing Elsevier Ltd.
,
London
, pp.
75
106
.
10.
Kumar
,
T.
,
Sharma
,
C.
, and
Kandpal
,
T. C.
,
2021
, “
Cost Reduction Potential in Parabolic Trough Collector Based CSP Plants : A Case Study for India
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110658
.
11.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Nag
,
K. C.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-Art Heat Transfer Fluids for Parabolic Trough Collector
,”
Int. J. Heat and Mass Transfer
,
152
, p.
119541
.
12.
Sahin
,
A. Z.
,
Ayaz
,
M.
,
Yilbas
,
B. S.
, and
Al-shara
,
A.
,
2020
, “
Performance Enhancement of Solar Energy Systems Using Nanofluids : An Updated Review
,”
Renewable Energy
,
145
, pp.
1126
1148
.
13.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in Solar Energy Field
,”
Renewable Energy
,
123
, pp.
398
406
.
14.
Alsaady
,
M.
,
Fu
,
R.
,
Yan
,
Y.
,
Liu
,
Z.
,
Wu
,
S.
, and
Boukhanouf
,
R.
,
2018
, “
An Experimental Investigation on the Effect of Ferrofluids on the Efficiency of Novel Parabolic Trough Solar Collector Under Laminar Flow Conditions
,”
Heat Transfer Eng.
,
40
(
9–10
), pp.
753
761
.
15.
Khosravi
,
A.
,
Malekan
,
M.
, and
Assad
,
M. E. H.
,
2019
, “
Numerical Analysis of Magnetic Field Effects on the Heat Transfer Enhancement in Ferrofluids for a Parabolic Trough Solar Collector
,”
Renewable Energy
,
134
, pp.
54
63
.
16.
Vutukuru
,
R.
,
Pegallapati
,
A.
, and
Maddali
,
S. R.
,
2019
, “
Suitability of Various Heat Transfer Fluids for High Temperature Solar Thermal Systems
,”
Appl. Therm. Eng.
,
159
, p.
113973
.
17.
Ferraro
,
V.
,
Imineo
,
F.
, and
Marinelli
,
V.
,
2013
, “
An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule-Brayton Cycle
,”
Energy
,
53
, pp.
323
331
.
18.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm. Eng.
,
109
, pp.
1
14
.
19.
Cipollone
,
R.
,
Cinocca
,
A.
, and
Gualtieri
,
A.
,
2013
, “
Gases as Working Fluid in Parabolic Trough CSP Plants
,”
Procedia Comput. Sci.
,
19
, pp.
702
711
.
20.
Rodriguez-Garcia
,
M. M.
,
Marquez-Payes
,
J. M.
,
Biencinto
,
M.
,
Adler
,
J. P.
, and
Diez
,
L. E.
,
2009
, “
First Experimental Results of a Solar PTC Facility Using Gas as the Heat Transfer Fluid
,”
Proceedings of the 15th SolarPACES Conference
,
Berlin, Germany
,
Sept. 15–18
, pp.
15
18
.
21.
Muñoz-anton
,
J.
,
Biencinto
,
M.
,
Zarza
,
E.
, and
Díez
,
L. E.
,
2014
, “
Theoretical Basis and Experimental Facility for Parabolic Trough Collectors at High Temperature Using Gas as Heat Transfer Fluid
,”
Appl. Energy
,
135
, pp.
373
381
.
22.
Islam
,
M. K.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2015
, “
Modelling and Analysis of the Effect of Different Parameters on a Parabolic-Trough Concentrating Solar System
,”
RSC Adv.
,
5
(
46
), pp.
36540
36546
.
23.
Anand
,
S.
, and
Kumar
,
S.
,
2022
, “
Thermo-Fluid Analysis of Parabolic Trough Receiver Using Different Gases
,”
Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference
,
Tamil Nadu, India
,
Dec. 17–20, 2021
.
24.
Biencinto
,
M.
,
González
,
L.
,
Zarza
,
E.
,
Díez
,
L. E.
, and
Muñoz-antón
,
J.
,
2014
, “
Performance Model and Annual Yield Comparison of Parabolic-Trough Solar Thermal Power Plants With Either Nitrogen or Synthetic Oil as Heat Transfer Fluid
,”
Energy Convers. Manage.
,
87
, pp.
238
249
.
25.
Amelio
,
M.
,
Ferraro
,
V.
,
Marinelli
,
V.
, and
Summaria
,
A.
,
2014
, “
An Evaluation of the Performance of an Integrated Solar Combined Cycle Plant Provided With Air-Linear Parabolic Collectors
,”
Energy
,
69
, pp.
742
748
.
26.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2010
, “
Numerical Study on Coupled Fluid Flow and Heat Transfer Process in Parabolic Trough Solar Collector Tube
,”
Sol. Energy
,
84
(
10
), pp.
1863
1872
.
27.
Sangotayo
,
E. O.
,
Waheed
,
M. A.
, and
Bolaji
,
B. O.
,
2019
, “
Thermal Evaluation of a Parabolic Trough Solar Concentrator Using Three Different Receivers Related Papers Thermal Evaluation of a Parabolic Trough Solar Concentrator
,”
J. Energy Tech. Pol.
,
9
(
5
), p.
18-28
.
28.
Ghomrassi
,
A.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2015
, “
Numerical Study and Optimization of Parabolic Trough Solar Collector Receiver Tube
,”
J. Sol. Eng.
,
137
(
5
), pp.
1
10
.
29.
Wang
,
P.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Zhou
,
L.
, and
Xia
,
L.
,
2016
, “
Conjugate Heat Transfer Modeling and Asymmetric Characteristic Analysis of the Heat Collecting Element for a Parabolic Trough Collector
,”
Int. J. Therm. Sci.
,
101
, pp.
68
84
.
30.
Jagad
,
P. I.
,
Puranik
,
B. P.
, and
Date
,
A. W.
,
2012
, “
An Iterative Procedure for the Evaluation of a Conjugate Condition in Heat Transfer Problems
,”
Numer. Heat Transfer Part A Appl.
,
61
(
5
), pp.
353
380
.
31.
Benoit
,
H.
,
Spreafico
,
L.
,
Gauthier
,
D.
, and
Flamant
,
G.
,
2016
, “
Review of Heat Transfer Fluids in Tube-Receivers Used in Concentrating Solar Thermal Systems: Properties and Heat Transfer Coefficients
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
298
315
.
32.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
33.
Khanna
,
S.
,
Singh
,
S.
, and
Kedare
,
S. B.
,
2015
, “
Explicit Expressions for Temperature Distribution and Deflection in Absorber Tube of Solar Parabolic Trough Concentrator
,”
Sol. Energy
,
114
, pp.
289
302
.
34.
Flores
,
V.
, and
Almanza
,
R.
,
2004
, “
Direct Steam Generation in Parabolic Trough Concentrators With Bimetallic Receivers
,”
Energy
,
29
(
5–6
), pp.
645
651
.
35.
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Panigrahi
,
P. K.
, and
Mallick
,
T. K.
,
2018
, “
Deformation of Receiver in Solar Parabolic Trough Collector Due to Non Uniform Temperature and Solar Flux Distribution and Use of Bimetallic Absorber Tube With Multiple Supports
,”
Energy
,
103
, pp.
323
332
.
36.
Tripathy
,
A. K.
,
Ray
,
S.
,
Sahoo
,
S. S.
, and
Chakrabarty
,
S.
,
2018
, “
Structural Analysis of Absorber Tube Used in Parabolic Trough Solar Collector and Effect of Materials on Its Bending : A Computational Study
,”
Sol. Energy
,
163
, pp.
471
485
.
37.
Khanna
,
S.
,
Sharma
,
V.
,
Singh
,
S.
, and
Kedare
,
S. B.
,
2016
, “
Explicit Expression for Temperature Distribution of Receiver of Parabolic Trough Concentrator Considering Bimetallic Absorber Tube
,”
Appl. Therm. Eng.
,
103
, pp.
323
332
.
38.
Wang
,
Y.
,
Liu
,
Q.
,
Lei
,
J.
, and
Jin
,
H.
,
2015
, “
Performance Analysis of a Parabolic Trough Solar Collector With Non-Uniform Solar Flux Conditions
,”
Int. J. Heat Mass Transfer
,
82
, pp.
236
249
.
39.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons Inc
,
New York
.
40.
Jensen
,
J. E.
,
Stewart
,
R. G.
,
Tuttle
,
W. A.
,
Brechna
,
H.
, and
Prodell
,
A. G.
,
1980
,
Selected Cryogenic Data Handbook, Section I-IX, Vol. 1
,
Brookhaven National Laboratory, US Department of Commerce
,
New York
.
41.
NIST Chemistry WebBook
,
2021
,
SRD 69, NIST US Department of Commerce
. Accessed December 10, 2021.
42.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, 3rd ed.,
McGraw-Hill
,
New York
.
43.
Versteeg
,
H. K.
, and
Malalasekara
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
.
44.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science
,
Hemisphere Publishing Corporation
,
Washington, DC
, pp.
1
197
.
45.
Ghoshdastidar
,
P. S.
,
2017
,
Computational Fluid Dynamics and Heat Transfer
,
Learning India Pvt. Ltd.
,
New Delhi
.
46.
Anand
,
S.
,
Mishra
,
D. P.
, and
Sarangi
,
S. K.
,
2020
, “
CFD Supported Performance Analysis of an Innovative Biomass Dryer
,”
Renewable Energy
,
159
, pp.
860
872
.
47.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
48.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-criteria Evaluation of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
.
49.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
Parametric Analysis and Optimization of a Solar Assisted Gas Turbine
,”
Energy Convers. Manage.
,
139
, pp.
151
165
.
50.
White
,
F. M.
,
2022
,
Fluid Mechanics
,
Tata McGraw-Hill Education
,
Noida
.
You do not currently have access to this content.