Abstract

Utilizing phase change material (PCM) in concentric tube and shell-and-tube latent heat exchangers known as latent heat thermal energy storage (LHTES) have been extensively studied due to the high ability and density in storing energy during the melting (charging) process. Inadequate melting in these systems reduces the thermal performance of LHTES systems. To facilitate and accelerate the melting process, the innovative design of such systems is a key. The present study proposes novel designs of toroidal tubes embedded in the LHTES system as a latent heat exchanger. The effect of the cross-sectional geometry of the tube on the thermal performance of the system is investigated through simulation and comparison of different cross-sectional geometric shapes. A mathematical model based on the enthalpy-porosity approach is developed and numerically solved by the finite volume method to simulate the energy transport processes inside the system. Several transient heat transfer characteristics, e.g., thermal filed, melt fraction, Nusselt number, and energy storage during phase change, are determined and compared for all cases to evaluate their thermal performance and find the optimal geometry. The results indicate that downward triangular geometry for the cross-sectional shape of the tube shows the best performance as it significantly enhances the melting process, resulting in a faster energy storage rate during the charging process. Compared with the circular toroidal tube as the base geometry, the downward triangular shape design for the toroidal tube can improve the charging power of the system by 21%.

References

1.
Mohaghegh
,
M.
,
2018
, “
Nanofluids Applications in Solar Energy Systems: A Review
,”
J. Sol. Energy Res.
,
3
(
1
), pp.
57
65
.
2.
Nazir
,
H.
,
Batool
,
M.
,
Bolivar Osorio
,
F. J.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
Kannan
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
491
523
.
3.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2013
, “
A Review of Studies on Central Receiver Solar Thermal Power Plants
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
12
39
.
4.
Mohaghegh
,
M. R.
,
Alomair
,
Y.
,
Alomair
,
M.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Abdullah
,
H.
,
2021
, “
Melting of PCM Inside a Novel Encapsulation Design for Thermal Energy Storage System
,”
Energy Convers. Manage. X
,
11
, p.
100098
.
5.
Hu
,
Z.
,
Li
,
A.
,
Gao
,
R.
, and
Yin
,
H.
,
2015
, “
Enhanced Heat Transfer for PCM Melting in the Frustum-Shaped Unit With Multiple PCMs
,”
J. Therm. Anal. Calorim.
,
120
(
2
), pp.
1407
1416
.
6.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
7.
Regin
,
A. F.
,
Solanki
,
S.
, and
Saini
,
J.
,
2008
, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
9
), pp.
2438
2458
.
8.
Patel
,
S.
,
Tasnim
,
S. H.
, and
Mahmud
,
S.
,
2021
, “
Phase Change Process Inside Toroidal Tube Heat Exchanger With Internal Fins
,”
J. Energy Storage
,
48
, p.
103695
.
9.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Abdulateef
,
J.
,
Sopian
,
K.
, and
Al-Abidi
,
A. A.
,
2018
, “
Geometric and Design Parameters of Fins Employed for Enhancing Thermal Energy Storage Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1620
1635
.
10.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.
11.
Khodadadi
,
J. M.
,
2015
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Improved Thermal Energy Storage
,” Google Patents, Patent No. US20090236079A1.
12.
Al-Jethelah
,
M.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2018
, “
Nano-PCM Filled Energy Storage System for Solar-Thermal Applications
,”
Renewable Energy
,
126
, pp.
137
155
.
13.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
14.
Lazzarin
,
R.
,
Noro
,
M.
,
Righetti
,
G.
, and
Mancin
,
S.
,
2019
, “
Application of Hybrid PCM Thermal Energy Storages With and Without al Foams in Solar Heating/Cooling and Ground Source Absorption Heat Pump Plant: An Energy and Economic Analysis
,”
Appl. Sci.
,
9
(
5
), p.
1007
.
15.
Mohaghegh
,
M. R.
,
Mahmud
,
S.
, and
Tasnim
,
S.
,
2021
, “
Effect of Geometric Configurations on the Thermal Performance of Encapsulated PCMs
,”
ASME 2021 Heat Transfer Summer Conference Collocated With the ASME 2021 15th International Conference on Energy Sustainability
,
Virtual Online
,
June 16–18
, p.
V001T07A006
.
16.
Mohaghegh
,
M. R.
,
Tasnim
,
S. H.
, and
Mahmud
,
S.
,
2022
, “
A Geometrical Optimization and Comparison Study on the Charging and Discharging Performance of Shell-and-Tube Thermal Energy Storage Systems
,”
J. Energy Storage
,
51
, p.
104549
.
17.
Xu
,
Y.
,
Ren
,
Q.
,
Zheng
,
Z.-J.
, and
He
,
Y.-L.
,
2017
, “
Evaluation and Optimization of Melting Performance for a Latent Heat Thermal Energy Storage Unit Partially Filled With Porous Media
,”
Appl. Energy
,
193
, pp.
84
95
.
18.
Nie
,
C.
,
Deng
,
S.
, and
Liu
,
J.
,
2020
, “
Effects of Fins Arrangement and Parameters on the Consecutive Melting and Solidification of PCM in a Latent Heat Storage Unit
,”
J. Energy Storage
,
29
, p.
101319
.
19.
Lin
,
W.
,
Wang
,
Q.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2018
, “
Experimental and Numerical Investigation on the Novel Latent Heat Exchanger With Paraffin/Expanded Graphite Composite
,”
Appl. Therm. Eng.
,
144
, pp.
836
844
.
20.
Alizadeh
,
M.
,
Hosseinzadeh
,
K.
,
Shahavi
,
M.
, and
Ganji
,
D.
,
2019
, “
Solidification Acceleration in a Triplex-Tube Latent Heat Thermal Energy Storage System Using V-Shaped Fin and Nano-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
163
, p.
114436
.
21.
Alizadeh
,
M.
,
Pahlavanian
,
M.
,
Tohidi
,
M.
, and
Ganji
,
D.
,
2020
, “
Solidification Expedition of Phase Change Material in a Triplex-Tube Storage Unit via Novel Fins and SWCNT Nanoparticles
,”
J. Energy Storage
,
28
, p.
101188
.
22.
Mat
,
S.
,
Al-Abidi
,
A. A.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Enhance Heat Transfer for PCM Melting in Triplex Tube with Internal–External Fins
,”
Energy Convers. Manage.
,
74
, pp.
223
236
.
23.
Borhani
,
S.
,
Hosseini
,
M.
,
Ranjbar
,
A.
, and
Bahrampoury
,
R.
,
2019
, “
Investigation of Phase Change in a Spiral-fin Heat Exchanger
,”
Appl. Math. Model.
,
67
, pp.
297
314
.
24.
Qi
,
C.
,
Zhai
,
X.
,
Liu
,
M.
,
Li
,
K.
,
Fan
,
F.
, and
Liang
,
L.
,
2019
, “
Experimental Study on Thermo-Hydraulic Performance of Nanofluids Upward Flowing Through Helical Tubes of Heat Exchanger System Based on Thermal Efficiency
,”
Asia-Pac. J. Chem. Eng.
,
14
(
4
), p.
e2320
.
25.
Rahimi
,
M.
,
Ardahaie
,
S. S.
,
Hosseini
,
M.
, and
Gorzin
,
M.
,
2020
, “
Energy and Exergy Analysis of an Experimentally Examined Latent Heat Thermal Energy Storage System
,”
Renewable Energy
,
147
, pp.
1845
1860
.
26.
Ardahaie
,
S. S.
,
Hosseini
,
M.
,
Ranjbar
,
A.
, and
Rahimi
,
M.
,
2019
, “
Energy Storage in Latent Heat Storage of a Solar Thermal System Using a Novel Flat Spiral Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
159
, p.
113900
.
27.
Ebadi
,
S.
,
Tasnim
,
S. H.
,
Aliabadi
,
A. A.
, and
Mahmud
,
S.
,
2018
, “
Melting of Nano-PCM Inside a Cylindrical Thermal Energy Storage System: Numerical Study With Experimental Verification
,”
Energy Convers. Manage.
,
166
, pp.
241
259
.
28.
Alomair
,
M.
,
Alomair
,
Y.
,
Tasnim
,
S.
,
Mahmud
,
S.
, and
Abdullah
,
H.
,
2018
, “
Analyses of Bio-Based Nano-PCM Filled Concentric Cylindrical Energy Storage System in Vertical Orientation
,”
J. Energy Storage
,
20
, pp.
380
394
.
29.
Kahwaji
,
S.
, and
White
,
M. A.
,
2019
, “
Edible Oils as Practical Phase Change Materials for Thermal Energy Storage
,”
Appl. Sci.
,
9
(
8
), p.
1627
.
30.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
31.
Brent
,
A.
,
Voller
,
V. R.
, and
Reid
,
K.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A: Appl.
,
13
(
3
), pp.
297
318
.
32.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
.
33.
Kumar
,
M.
, and
Krishna
,
D. J.
,
2017
, “
Influence of Mushy Zone Constant on Thermohydraulics of a PCM
,”
Energy Procedia
,
109
, pp.
314
321
.
34.
Voile
,
V.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modeling Methodology for Convection Diffusion Mushy Region Phase-Change Problem
,”
Int. J. Heat Mass Transfer
,
30
(
9
), pp.
1709
1719
.
35.
Seddegh
,
S.
,
Tehrani
,
S. S. M.
,
Wang
,
X.
,
Cao
,
F.
, and
Taylor
,
R. A.
,
2018
, “
Comparison of Heat Transfer Between Cylindrical and Conical Vertical Shell-and-Tube Latent Heat Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
130
, pp.
1349
1362
.
36.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
37.
Jany
,
P.
, and
Bejan
,
A.
,
1988
, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1221
1235
.
38.
Ghalambaz
,
M.
,
Mehryan
,
S.
,
Veisimoradi
,
A.
,
Mahdavi
,
M.
,
Zahmatkesh
,
I.
,
Kazemi
,
Z.
,
Younis
,
O.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2021
, “
Melting Process of the Nano-Enhanced Phase Change Material (NePCM) in an Optimized Design of Shell and Tube Thermal Energy Storage (TES): Taguchi Optimization Approach
,”
Appl. Therm. Eng.
,
193
, p.
116945
.
You do not currently have access to this content.