Abstract

Shell and tube heat exchangers (STHEs) are the most common type of heat exchanger in preheat trains (PHT) of oil refineries and in chemical process plants. Most commercial design software tools for STHE assume uniform distribution over all tubes of a tube bundle. This leads to various challenges in the operation of the affected devices. Flow maldistribution reduces heat duty of STHE in many applications and supports fouling buildup in fluids that tend to particle, bio, and crystallization fouling (Verein Deutscher Ingenieure, ed., 2010, Heat Atlas, 2nd ed., VDI-Buch., Springer-Verlag). In this article, a fluid mechanics study about tube side flow distribution of crude oil and related hydrocarbons in two-pass PHT heat exchangers is described. It is shown that the amount of flow maldistribution varies significantly between the different STHE designs. Therefore, a parameter study was conducted to investigate reasons for maldistribution. For instance, the nozzles diameter, type, and orientation were identified as crucial parameters. In consequence, simple design suggestions for reducing tube side flow maldistribution are proposed.

References

1.
Fortune Business Insights
,
2020
, Heat Exchanger Market Size, Share and Industry Analysis, 2019–2026, https://www.fortunebusinessinsights.com/industry-reports/heat-exchangers-market-100919, Accessed January 31, 2020.
2.
Steinhagen
,
R.
,
Müller-Steinhagen
,
H.
, and
Maani
,
K.
,
1993
, “
Problems and Costs Due to Heat Exchanger Fouling in New Zealand Industries
,”
Heat Transfer Eng.
,
14
(
1
), pp.
19
30
.
3.
Müller-Steinhagen
,
H.
,
Malayeri
,
M. R.
, and
Watkinson
,
A. P.
,
2009
, “
Heat Exchanger Fouling: Environmental Impacts
,”
Heat Transfer Eng.
,
30
(
10–11
), pp.
773
776
.
4.
Collier
,
J. G.
,
1983
, “
Reliability Problems of Heat Transfer Equipment
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
51
62
.
5.
Chowdhury
,
K.
, and
Sarangi
,
S.
,
1985
, “
Effect of Flow Maldistribution on Multipassage Heat Exchanger Performance
,”
Heat Transfer Eng.
,
6
(
4
), pp.
45
54
.
6.
Mueller
,
A. C.
, and
Chiou
,
J. P.
,
1988
, “
Review of Various Types of Flow Maldistribution in Heat Exchangers
,”
Heat Transfer Eng.
,
9
(
2
), pp.
36
50
.
7.
Mueller
,
A. C.
,
1987
, “
Effects of Some Types of Maldistribution on the Performance of Heat Exchangers
,”
Heat Transfer Eng.
,
8
(
2
), pp.
75
86
.
8.
Mohammadi
,
K.
, and
Malayeri
,
M.
,
2013
, “
Parametric Study of Gross Flow Maldistribution in a Single-Pass Shell and Tube Heat Exchanger in Turbulent Regime
,”
Int. J. Heat Fluid Flow
,
44
(
Dec
), pp.
14
27
.
9.
Prakash
,
S.
,
Prabhakar
,
S.
,
Kumar
,
M. S.
, and
Annamalai
,
K.
,
2015
,
“Design Optimization of a Heat Exchanger Header With Inlet Modifier
,”
JCHPS Special Issue
(
7
), pp.
347
350
.
10.
Kim
,
M. I.
,
Lee
,
Y.
,
Kim
,
B. W.
,
Lee
,
D. H.
, and
Song
,
W. S.
,
2009
, “
CFD Modeling of Shell-and-Tube Heat Exchanger Header for Uniform Distribution Among Tubes
,”
Korean J. Chem. Eng.
,
26
(
2
), pp.
359
363
.
11.
Verein Deutscher Ingenieure, ed., 2010, VDI Heat Atlas, 2nd ed., VDI-Buch, Springer-Verlag, Berlin/Heidelberg.
12.
Tubular Exchanger Manufacturers Association, 2007, TEMA 9th ed., Standards of The Tubular Exchanger Manufacturers Association, Tubular Exchanger Manufacturers Association, New York.
13.
Farr
,
J. R.
, and
Jawad
,
M. H.
,
2006
,
Design of Heat Exchangers
,
American Society of Mechanical Engineers
,
New York
.
14.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
,
1998
, “
Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers. Part I: Foundation and Fluid Mechanics
,”
Numer. Heat Transfer, Part A: Appl.
,
33
(
8
), pp.
799
816
.
15.
Bremhorst
,
K.
, and
Brennan
,
M.
,
2011
, “
Investigation of Shell and Tube Heat Exchanger Tube Inlet Wear by Computational Fluid Dynamics
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
4
), pp.
566
578
.
16.
Center for Information Services and High Performance Computing (ZIH), TU Dresden
,
2021
, .
17.
Munnannur
,
A.
,
Cremeens
,
C. M.
, and
Liu
,
Z. G.
,
2011
, “
Development of Flow Uniformity Indices for Performance Evaluation of Aftertreatment Systems
,”
SAE Int. J. Engines
,
4
(
4
), pp.
1545
1555
.
18.
Weltens
,
H.
,
Bressler
,
H.
,
Terres
,
F.
,
Neumaier
,
H.
, and
Rammoser
,
D.
,
1993
, “
Optimisation of Catalytic Converter Gas Flow Distribution by CFD Prediction
,” SAE International.
19.
Joshi
,
H. M.
,
Shilpi
,
N. B.
, and
Agarwal
,
A.
,
2009
, “
Relate Crude Oil Fouling Research to Field Fouling Observations
,”
Proceeding of International Conference on Heat Exchanger Fouling and Cleaning
,
Schladming, Austria
,
June
, pp.
15
16
.
20.
Joshi
,
H. M.
,
2013
, “
Crude Oil Fouling Field Data and a Model for Pilot-Plant Scale Data
,”
Proceeding of International Conference on Heat Exchanger Fouling and Cleaning
,
Budapest, Hungary
,
June
, pp.
22
26
.
21.
Dorau
,
T.
,
Schab
,
R.
,
Unz
,
S.
,
Malayeri
,
R. M.
, and
Beckmann
,
M.
,
2020
, “
Impact of Flow Maldistribution in Shell-and-Tube Heat Exchangers
,”
Proceedings of the 12th European Conference on Industrial Furnaces and Boilers
,
Porto, Portugal
,
November
.
22.
Schab
,
R.
,
Dorau
,
T.
,
Unz
,
S.
, and
Beckmann
,
M.
,
2021
, “
Optimierung Der Strömungsverteilung Von Rohrbündelwärmeübertragern Zur Minimierung Von Foulingerscheinungen
,”
53. Kraftwerkstechni­sches Kolloquium 2021
,
Dresden, Germany
,
October
.
You do not currently have access to this content.