Ferrofluids are colloidal suspensions, in which the solid phase material is composed of magnetic nanoparticles, while the base fluid can potentially be any fluid. The solid particles are held in suspension by weak intermolecular forces and may be made of materials with different magnetic properties. Magnetite is one of the materials used for its natural ferromagnetic properties. Heat transfer performance of ferrofluids should be carefully analyzed and considered for their potential of their use in wide range of applications. In this study, convective heat transfer experiments were conducted in order to characterize convective heat transfer enhancements with lauric acid coated ironoxide (Fe3O4) nanoparticle based ferrofluids, which have volumetric fractions varying from 0% to ∼5% and average particle diameter of 25 nm, in a hypodermic stainless steel microtube with an inner diameter of 514 μm, an outer diameter of 819 μm, and a heated length of 2.5 cm. Heat fluxes up to 184 W/cm2 were applied to the system at three different flow rates (1 ml/s, 0.62 ml/s, and 0.36 ml/s). A decrease of around 100% in the maximum surface temperature (measured at the exit of the microtube) with the ferrofluid compared to the pure base fluid at significant heat fluxes (>100 W/cm2) was observed. Moreover, the enhancement in heat transfer increased with nanoparticle concentration, and there was no clue for saturation in heat transfer coefficient profiles with increasing volume fraction over the volume fraction range in this study (0–5%). The promising results obtained from the experiments suggest that the use of ferrofluids for heat transfer, drug delivery, and biological applications can be advantageous and a viable alternative as new generation coolants and futuristic drug carriers.

References

1.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
, pp.
855
863
.10.1016/S0017-9310(01)00175-2
2.
Chen
,
H.
,
Abolmatty
,
A.
, and
Faghri
M.
,
2011
, “
Microfluidic Inverse Phase ELISA via Manipulation of Magnetic Beads
,”
Microfluid. Nanofluid
.
10
, pp.
593
605
.10.1007/s10404-010-0692-2
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Soyez
,
G.
,
Thompson
,
L. J.
, and
Di Melfi
,
R. J.
,
1999
, “
Novel Thermal Properties of Nanostructured Materials
,”
Mater. Sci. Forum
,
312-314
, pp.
629
634
.10.4028/www.scientific.net/MSF.312-314.629
4.
Lee
,
S.
,
Choi
S. U. S.
,
Li
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
, pp.
280
289
.10.1115/1.2825978
5.
Scherer
,
C.
, and
Neto
,
A. M. F.
,
2005
, “
Ferrofluids: Properties and Applications
,”
Brazillian J. Phys.
,
35
(
3A
), pp.
718
727
.10.1590/S0103-97332005000400018
6.
Bilgin
,
A.
,
Kurtoglu
,
E.
,
Erk
,
H. C.
,
Sesen
,
M.
,
Yagci, Acar
,
H. F.
, and
Kosar
,
A.
,
2011
, “
Magnetic Nanoparticle Based Nanofluid Actuation With Dynamic Magnetic Fields
,”
Proceedings of the ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 9, Edmonton
,
Canada
, June 19–22, Paper No. ICNMM2011-58222.
7.
Bilgin
,
A.
,
Kurtoglu
,
E.
,
Erk
,
H. C.
,
Sesen
,
M.
,
Yagci, Acar
,
H. F.
, and
Kosar
,
A.
,
2011
, “
A Novel Magnetomechanical Pump to Actuate Ferrofluids in Minichannels
,”
Proceedings of the Thermal and Material Nonoscience and Nanotechnology, TMNN-2011
,
Antalya, Turkey
, May 29–June 3.
8.
Tietze
R.
,
Lyer
S.
,
Dürr
S.
, and
Alexiou
C.
,
2012
, “
Nanoparticles for Cancer Therapy Using Magnetic Forces
,”
Nanomedicine (London, U. K.)
,
7
(
3
), pp.
447
457
.10.2217/nnm.12.10
9.
Kline
,
S.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
10.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
11.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 4.
12.
Vasallo
,
P.
,
Kumar
,
R.
, and
D'Amico
,
S.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.10.1016/S0017-9310(03)00361-2
13.
Bang
, I
. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
14.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
,
2006
, “
Experimental Study on CHF Characteristics of Water–TiO2 Nano-Fluids
,”
Nucl. Eng. Technol.
,
38
, pp.
61
68
.
15.
Kim
,
S. J.
,
Bang
, I
. J.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
16.
Şeşen
,
M.
,
Tekşen
,
Y.
,
Şahin
,
B.
,
Şendur
,
K.
,
Mengüç
,
M. P.
, and
Koşar
,
A.
,
2013
, “
Boiling Heat Transfer Enhancement of Magnetically Actuated Nanofluids
,”
Appl. Phys. Lett.
,
102
, p.
163107
.10.1063/1.4802791
17.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
, pp.
149
159
.10.1016/S0017-9310(02)00209-0
18.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
, pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
19.
Ozdemir
,
M. R.
, and
Koşar
,
A.
, “
Experimental Study on Single-Phase Flow in Microtubes at High Mass Flow Rates
,”
ASME J. Heat Transfer
,
135
, p.
074502
.10.1115/1.4023881
20.
Qu
,
W.
, and
Mudawar
, I
.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
21.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part 1: Theorethical and Numerical İnvestigations
,”
Brazilian J. Chem. Eng.
,
25
(
04
), pp.
613
630
.10.1590/S0104-66322008000400001
22.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
23.
Bozhko
,
A. A.
, and
Putin
,
G. F.
,
2004
, “
Magnetic Action on Convection and Heat Transfer in Ferrofluid
,”
Indian J. Eng. Mater. Sci.
,
11
, pp.
309
314
.
24.
Mohammadpourfard
,
M.
,
2012
, “
Numerical Study of Ferrofluid Flow and Heat Transfer in the Presence of a Non-Uniform Magnetic Field in Rectangular Microchannels
,”
Heat Transfer—Asian Res.
,
41
(
4
), pp.
302
317
.10.1002/htj.21004
25.
Martín-Callizo
C.
,
Palm
B.
, and
Ali
,
R.
,
2007
, “
New Experimental Results on Flow Boiling of R-134a in a Vertical Microchannel
,”
The 10th UK National Heat Transfer Conference
, Sept. 10–11,
Edinburgh, UK
.
26.
Kurtoglu
,
E.
,
Bilgin
,
A.
,
Sesen
,
M.
,
Mısırlıoğlu
,
B.
,
Yıldız
,
M.
,
Yagci, Acar
,
H. F. Y.
, and
Koşar
,
A.
,
2012
, “
Ferrofluid Actuation With Varying Magnetic Fields for Micropumping Applications
,”
Microfluid. Nanofluid.
,
13
, pp.
683
694
.10.1007/s10404-012-1008-5
27.
Sesen
,
M.
,
Tekşen
,
Y.
,
Şendur
,
K.
,
Mengüç
,
M. P.
,
Öztürk
,
H.
,
Acar
,
H. F. Y.
, and
Koşar
,
A.
,
2012
, “
Heat Transfer Enhancement With Actuation of Magnetic Nanoparticles Suspended in a Base Fluid
,”
J. Appl. Phys.
,
112
, p.
064320
.10.1063/1.4752729
You do not currently have access to this content.