Incorporation of a thermoelectric (TE) device for heat regeneration and recovery can help realize adsorption systems that would be compact enough to fit inside electronic enclosures. Such a cooling system can be miniaturized without loss of performance and will have very few moving parts, hence lower maintenance needs. These traits are preferred in systems desired to be used for cooling electronics in thermally harsh environments (such as oil well, military machinery, and vicinity of automobile engines) that are characterized by temperatures greater than 200°C and provide little or no room for maintenance activities during operation. However, ambient temperatures near 200°C place constraints on the temperature difference between hot and cold sides of a TE device across which it could pump heat with appreciable COP (>0.4). This leaves little room to change the operating parameters of a TE device and hence that of the adsorption heat pump; as a result, only a small range of cooling load may be thermally managed. In practice, such a system will be less desirable since heat dissipation from electronics can keep changing during operation. In this work, the options available to manage varying cooling load while satisfying the thermal constraints on a TE device have been investigated using a theoretical model. Varying the number of active TE devices in response to a changing cooling load has been suggested as the most promising solution.

1.
Braun
,
T.
,
Becker
,
K. F.
,
Sommer
,
J. P.
,
Loher
,
T.
,
Schottenloher
,
K.
,
Kohl
,
R.
,
Pufall
,
R.
,
Bader
,
V.
,
Koch
,
M.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
, 2005, “
High Temperature Potential of Flip Chip Assemblies for Automotive Applications
,”
Proceedings of Electronic Components and Technology Conference
, Vol.
55
, pp.
376
383
.
2.
Werner
,
M. R.
, and
Fahrner
,
W. R.
, 2001, “
Review on Materials, Microsensors, Systems, and Devices for High-Temperature and Harsh-Environment Applications
,”
IEEE Trans. Ind. Electron.
0278-0046,
48
(
2
), pp.
249
257
.
3.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R.
, and
Christopher
,
M.
, 2004, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
27
(
3
), pp.
164
176
.
4.
McCluskey
,
F. P.
,
Grzybowski
,
R.
, and
Podlesak
,
T.
, 1997,
High Temperature Electronics
,
CRC
,
Boca Raton, FL
, Chap. 1.
5.
Cohen
,
J.
,
Rogers
,
D. J.
,
Malcore
,
E.
, and
Estep
,
J.
, 2002,
The Quest for High Temperature MWD and LWD Tools
, GasTIPS, GasTIPS is a publication of the Gas Technology Institute, U.S. Department of Energy and Hart Energy Publishing.
6.
Normann
,
R. A.
, 2006, “
First High-Temperature Electronics Product Survey 2005
,” Sandia National Laboratories, Report No. SAND2006-1580. Available From U.S. Department of Commerce National Technical Information Service. Online Order can be Placed at the following URL: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#onlinehttp://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
7.
Ohadi
,
M.
, and
Qi
,
J.
, 2004, “
Thermal Management of Harsh-Environment Electronics
,”
20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
231
240
.
8.
Mahefkey
,
T.
, 1994, “
Thermal Management of High Temperature Power Electronics Limitations and Technology
,”
Proceedings of the Second International High Temperature Electron Conference
, Charlotte, NC, pp.
IX
-21–IX-
2
.
9.
Martin
,
F. S.
, and
Bearden
,
J. L.
, 1994, U.S. Patent No. 5,554,897, available online at www.uspto.govwww.uspto.gov
10.
De Kanter
,
S.
, 1982, U.S. Patent No. 4,407,136, available online at www.uspto.govwww.uspto.gov
11.
Parrot
,
R. A.
,
Song
,
H.
, and
Chen
,
K. -C.
, 1999, U.S. Patent No. 6,336,408, available online at www.uspto.govwww.uspto.gov
12.
Jakaboski
,
J. C.
, 2004, “
Innovative Thermal Management of Electronics Used in Oil Well Logging
,” MS thesis, Georgia Institute of Technology, Atlanta. http://etd.gatech.edu/theses/available/etd-05142004-111910/http://etd.gatech.edu/theses/available/etd-05142004-111910/
13.
Flores
,
A. G.
, 1996, U.S. Patent No. 5,701,751, available online at www.uspto.govwww.uspto.gov
14.
Jeong
,
S.
, 2004, “
How Difficult Is It to Make a Micro Refrigerator?
,”
Int. J. Refrig.
0140-7007,
27
, pp.
309
313
.
15.
Gordon
,
J. M.
,
Ng
,
K. C.
,
Chua
,
H. T.
, and
Chakraborty
,
A.
, 2002, “
The Electro-Adsorption Chiller: A Miniaturized Cooling Cycle With Applications to Micro-Electronics
,”
Int. J. Refrig.
0140-7007,
25
, pp.
1025
1033
.
16.
Ng
,
K. C.
,
Sai
,
M. A.
,
Chakraborty
,
A.
,
Saha
,
B. B.
, and
Koyama
,
S.
, 2006, “
The Electro-Adsorption Chiller: Performance Rating of a Novel Miniaturized Cooling Cycle for Electronics Cooling
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
889
896
.
17.
Bennett
,
G. A.
, 1988, “
Active Cooling for Downhole Instrumentation: Preliminary Analysis and System Selection
,” Loa Alamos National Laboratory, Report No. LA-11102-MS.
18.
DiFoggio
,
R.
, 2001, U.S. Patent No. 6,341,498, available online at www.uspto.govwww.uspto.gov
19.
Kim
,
Y. J.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
, 2008, “
An Absorption Based Miniature Heat Pump System for Electronics Cooling
,”
Int. J. Refrig.
0140-7007,
31
(
1
), pp.
23
33
.
20.
Suman
,
S.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
, 2004, “
Cryogenic/Sub-Ambient, Cooling of Electronics: Revisited
,”
ITherm Conference
, Las Vegas, NV.
21.
Sinha
,
A.
,
Joshi
,
Y.
, and
Storm
,
B. H.
, 2007, “
Thermoelectric Cooler Based Regenerative Adsorption Refrigeration System for High Temperature Electronics
,”
ASME InterPACK Conference
, Vancouver, Canada.
22.
Sinha
,
A.
, and
Joshi
,
Y. K.
, 2009, “
Thermoelectric Assisted Adsorption Cooling System for Harsh Environment Electronics: Issues With Heat Regeneration
,”
ASME InterPACK Conference
, San Francisco.
23.
Sinha
,
A.
, and
Joshi
,
Y. K.
, 2009, “
Performance of Thermoelectric Based Regenerative Adsorption Cooling System for Harsh Environment
,”
ASME IMECE Conference
, Orlando, FL.
24.
Cacciola
,
G.
,
Hajji
,
A.
,
Maggio
,
G.
, and
Restuccia
,
G.
, 1993, “
Dynamic Simulation of a Recuperative Adsorption Heat Pump
,”
Energy
0360-5442,
18
(
11
), pp.
1125
1137
.
25.
Cacciola
,
G.
, and
Restuccia
,
G.
, 1995, “
Reversible Adsorption Heat Pump: A Thermodynamic Model
,”
Int. J. Refrig.
0140-7007,
18
(
2
), pp.
100
106
.
26.
Ng
,
K. C.
,
Chua
,
H. T.
,
Chung
,
C. Y.
,
Loke
,
C. H.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
, and
Saha
,
B. B.
, 2001, “
Experimental Investigation of the Silica Gel-Water Adsorption Isotherm Characteristics
,”
Appl. Therm. Eng.
1359-4311,
21
, pp.
1631
1642
.
27.
Liu
,
Y.
, and
Leong
,
K. C.
, 2006, “
Numerical Study of a Novel Cascading Adsorption Cycle
,”
Int. J. Refrig.
0140-7007,
29
, pp.
250
259
.
28.
Zhang
,
L. Z.
, 2000, “
Design and Testing of an Automobile Waste Heat Adsorption Cooling System
,”
Appl. Therm. Eng.
1359-4311,
20
, pp.
103
114
.
29.
Restuccia
,
G.
, and
Cacciola
,
G.
, 1999, “
Performances of Adsorption Systems for Ambient Heating and Air Conditioning
,”
Int. J. Refrig.
0140-7007,
22
, pp.
18
26
.
30.
Szarzynski
,
S.
,
Feng
,
Y.
, and
Pons
,
M.
, 1997, “
Study of Different Internal Vapour Transports for Adsorption Cycles With Heat Regeneration
,”
Int. J. Refrig.
0140-7007,
20
(
6
), pp.
390
401
.
31.
Gorbach
,
A.
,
Stegmaier
,
M.
, and
Eigenberger
,
G.
, 2004, “
Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A-Equilibria and Kinetics
,”
Adsorption
0929-5607,
10
, pp.
29
46
.
32.
Simons
,
R. E.
,
Ellsworth
,
M. J.
, and
Chu
,
R. C.
, 2005, “
An Assessment of Module Cooling Enhancement With Thermoelectric Coolers
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
76
84
.
33.
2010, Information Available Online: http://lairdtech.thomasnet.com/item/thermoelectric-modules-2/thermatec-trade-series-thermoelectric-coolers/pn-4089?&seo=110&bc=100|3001624|3001688|3001253, last accessed Apr. 17.
34.
Chahbani
,
M. H.
,
Labidi
,
J.
, and
Paris
,
J.
, 2004, “
Modeling of Adsorption Heat Pumps With Heat Regeneration
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
431
447
.
35.
Cho
,
S.
, and
Kim
,
J.
, 1992, “
Modeling of a Silica Gel/Water Adsorption Cooling System
,”
Energy
0360-5442,
17
(
9
), pp.
829
839
.
36.
Chua
,
H. T.
,
Ng
,
K. C.
,
Wang
,
W.
,
Yap
,
C.
, and
Wang
,
X. L.
, 2004, “
Transient Modeling of a Two Bed Silica Gel-Water Adsorption Chiller
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
659
669
.
37.
van Benthem
,
G. H. W.
,
Cacciola
,
G.
, and
Restuccia
,
G.
, 1995, “
Regenerative Adsorption Heat Pumps: Optimization of the Design
,”
Heat Recovery Syst. CHP
0890-4332,
15
(
6
), pp.
531
544
.
38.
Joshi
,
Y.
,
Azar
,
K.
,
Blackburn
,
D.
,
Lasance
,
C. J. M.
,
Mahajan
,
R.
, and
Rantala
,
J.
, 2003, “
How Well Can We Assess Thermally Driven Reliability Issues in Electronic Systems Today? Summary of Panel Held at the Therminic 2002
,”
Microelectron. J.
0026-2692,
34
, pp.
1195
1201
.
You do not currently have access to this content.