Abstract

A three-dimensional study of a cold droplet impacting obliquely on a heated solid flat surface covered with a hot liquid layer has been performed. The drop Weber number, liquid film thickness, and drop impact angle are set to a range from 100 to 800, 0.1 to 0.4, and 0 deg to 60 deg, respectively. The interface evolution and thermal behavior of the drop impingement is well captured using coupled level set and volume of the fluid method (CLSVOF). The code is validated against previously published results both qualitatively and quantitatively. The results show that in the case of oblique drop impact, the crown dynamics and wall heat flux distribution exhibit an asymmetric pattern, with secondary droplets generated solely on the downstream side, as opposed to normal drop impact in which the secondary drops generated around the circumference of the crown. Based on heat flux values, two distinct region within the liquid film exist: (i) impact region around the impact point and (ii) undisturbed region far from the impact region characterized by the impact dynamics. A parametric analysis further reveals that for a moderate Weber number, asymmetric behavior increases as the drop impact angle increases, resulting in a reduction in heat transfer from the solid surface. However, for a drop impacting at an angle of 28 deg, increased asymmetry due to a increase in the Weber number results in significant cooling of the impact region. Furthermore, it is also found that a thinner liquid film promotes higher heat transfer from the solid surface, resulting in a higher wall heat flux.

References

1.
Herbert
,
S.
,
Fischer
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Local Heat Transfer and Phase Change Phenomena During Single Drop Impingement on a Hot Surface
,”
Int. J. Heat Mass Transfer
,
61
, pp.
605
614
.
2.
Juarez
,
G.
,
Gastopoulos
,
T.
,
Zhang
,
Y.
,
Siegel
,
M. L.
, and
Arratia
,
P. E.
,
2012
, “
Splash Control of Drop Impacts With Geometric Targets
,”
Phys. Rev. E
,
85
, p.
026319
.
3.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Influence of Surface Wettability on Transport Mechanisms Governing Water Droplet Evaporation
,”
Langmuir
,
30
(
32
), pp.
9726
9730
.
4.
Roisman
,
I. V.
,
Horvat
,
K.
, and
Tropea
,
C.
,
2006
, “
Spray Impact: Rim Transverse Instability Initiating Fingering and Splash, and Description of a Secondary Spray
,”
Phys. Fluids
,
18
(
10
), p.
102104
.
5.
Guo
,
Y.
,
Lian
,
Y.
, and
Sussman
,
M.
,
2016
, “
Investigation of Drop Impact on Dry and Wet Surfaces With Consideration of Surrounding Air
,”
Phys. Fluids
,
28
(
7
), p.
073303
.
6.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.
7.
Josserand
,
C.
, and
Thoroddsen
,
S.
,
2016
, “
Drop Impact on a Solid Surface
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
365
391
.
8.
Mundo
,
C. H. R.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
9.
Roisman
,
I. V.
, and
Tropea
,
C.
,
2002
, “
Impact of a Drop Onto a Wetted Wall: Description of Crown Formation and Propagation
,”
J. Fluid Mech.
,
472
, pp.
373
397
.
10.
Josserand
,
C.
, and
Zaleski
,
S.
,
2003
, “
Droplet Splashing on a Thin Liquid Film
,”
Phys. Fluids
,
15
(
6
), pp.
1650
1657
.
11.
Cossali
,
G. E.
,
Coghe
,
A.
, and
Marengo
,
M.
,
1997
, “
The Impact of a Single Drop on a Wetted Solid Surface
,”
Exp. Fluids
,
22
(
6
), pp.
463
472
.
12.
Weiss
,
D. A.
, and
Yarin
,
A. L.
,
1999
, “
Single Drop Impact Onto Liquid Films: Neck Distortion, Jetting, Tiny Bubble Entrainment, and Crown Formation
,”
J. Fluid Mech.
,
385
, pp.
229
254
.
13.
Rioboo
,
R.
,
Bauthier
,
C.
,
Conti
,
J.
,
Voue
,
M.
, and
Coninck
,
J. D.
,
2003
, “
Experimental Investigation of Splash and Crown Formation During Single Drop Impact on Wetted Surfaces
,”
Exp. Fluids
,
35
(
6
), pp.
648
652
.
14.
Cossali
,
G. E.
,
Marengo
,
M.
,
Coghe
,
A.
, and
Zhdanov
,
S.
,
2004
, “
The Role of Time in Single Drop Splash on Thin Film
,”
Exp. Fluids
,
36
(
6
), pp.
888
900
.
15.
Rieber
,
M.
, and
Frohn
,
A.
,
1999
, “
A Numerical Study on the Mechanism of Splashing
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
455
461
.
16.
Fullana
,
J. M.
, and
Zaleski
,
S.
,
1999
, “
Stability of a Growing End Rim in a Liquid Sheet of Uniform Thickness
,”
Phys. Fluids
,
11
(
5
), pp.
952
954
.
17.
Krechetnikov
,
R.
, and
Homsy
,
G. M.
,
2009
, “
Crown-Forming Instability Phenomena in the Drop Splash Problem
,”
J. Colloid Interface Sci.
,
331
(
2
), pp.
555
559
.
18.
Guo
,
Y.
, and
Lian
,
Y.
,
2017
, “
High-Speed Oblique Drop Impact on Thin Liquid Films
,”
Phys. Fluids
,
29
(
8
), p.
082108
.
19.
Chen
,
Z.
,
Shu
,
C.
,
Wang
,
Y.
, and
Yang
,
L. M.
,
2020
, “
Oblique Drop Impact on Thin Film: Splashing Dynamics at Moderate Impingement Angles
,”
Phys. Fluids.
,
32
(
3
), p.
033303
.
20.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2001
, “
Cooling Effectiveness of a Water Drop Impinging on a Hot Surface
,”
Int. J. Heat and Fluid Flow
,
22
(
2
), pp.
201
210
.
21.
Trujillo
,
M. F.
, and
Lewis
,
S. R.
,
2012
, “
Thermal Boundary Layer Analysis Corresponding to Droplet Train Impingement
,”
Phys. Fluids
,
24
(
11
), p.
112102
.
22.
Liang
,
G.
,
Mu
,
X.
,
Guo
,
Y.
, and
Shen
,
S.
,
2016
, “
Flow and Heat Transfer During a Single Drop Impact on a Liquid Film
,”
Numer. Heat Transfer, Part B: Fundamentals
,
69
(
6
), pp.
575
582
.
23.
Li
,
D.
,
Duan
,
X.
,
Zheng
,
Z.
, and
Liu
,
Y.
,
2018
, “
Dynamics and Heat Transfer of a Hollow Droplet Impact on a Wetted Solid Surface
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1014
1023
.
24.
Yang
,
Q.
,
Wang
,
X. H.
,
Zhu
,
L.
,
Wang
,
R. J.
, and
Zhao
,
J. Q.
,
2019
, “
Numerical Investigation of Local Heat Transfer Characteristics of an Oblique Droplet Impacting a Wetted Wall
,”
Case Stud. Thermal Eng.
,
14
, p.
100461
.
25.
Wang
,
F.
,
Gong
,
L.
,
Shen
,
S.
, and
Guo
,
Y.
,
2020
, “
Flow and Heat Transfer Characteristics of Droplet Obliquely Impact on a Stationary Liquid Film
,”
Numer. Heat Transf. B: Fundam.
,
77
(
3
), pp.
228
241
.
26.
Singh
,
S.
, and
Saha
,
A. K.
,
2021
, “
Numerical Study of Flow and Heat Transfer During a High-Speed Micro-Drop Impact on Thin Liquid Films
,”
Int. J. Heat Fluid Flow
,
89
, p.
108808
.
27.
Liu
,
X.
,
Qu
,
Y.
,
Wang
,
Y.
,
Wang
,
M.
,
Wang
,
Z.
, and
Sun
,
H.
,
2021
, “
Numerical Analysis of Two Hollow Drops Simultaneously Impacting a Wet Surface
,”
Phys. Fluids.
,
33
(
4
), p.
043312
.
28.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
29.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature Dependent Speed
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
30.
Liang
,
G.
,
Zhang
,
T.
,
Chen
,
L.
,
Chen
,
Y.
, and
Shen
,
S.
,
2019
, “
Single-Phase Heat Transfer of Multi-Droplet Impact on Liquid Film
,”
Int. J. Heat and Mass Transfer
,
132
, pp.
288
292
.
31.
Li
,
D.
, and
Duan
,
X.
,
2019
, “
Numerical Analysis of Droplet Impact and Heat Transfer on an Inclined Wet Surface
,”
Int. J. Heat Mass Transfer
,
128
, pp.
459
468
.
32.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardovelli
,
S.
, and
Zaleski
,
S.
,
1999
, “
Volume of Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
,
152
(
2
), pp.
423
456
.
33.
Wang
,
Z.
,
Yang
,
J.
,
Koo
,
B.
, and
Stern
,
F.
,
2009
, “
A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves
,”
Int. J. Multiphase Flow
,
35
(
3
), pp.
227
246
.
34.
Haghshenas
,
M.
,
Wilson
,
J. A.
, and
Kumar
,
R.
,
2017
, “
Algebraic Coupled Level Set-Volume of Fluid Method for Surface Tension Dominant Two-Phase Flows
,”
Int. J. Multiphase. Flow.
,
90
, pp.
13
28
.
35.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3d and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.
36.
Son
,
G.
, and
Hur
,
N.
,
2002
, “
A Coupled Level Set and Volume-of-Fluid Method for the Buoyancy-Driven Motion of Fluid Particles
,”
Numer. Heat Transf. B
,
42
(
6
), pp.
523
542
.
37.
Son
,
G.
,
2003
, “
Efficient Implementation of a Coupled Level-Set and Volume-of-Fluid Method for Three-Dimensional Incompressible Two-Phase Flows
,”
Numer. Heat Transf. B
,
43
(
6
), pp.
549
565
.
38.
Singh
,
S.
, and
Saha
,
A. K.
,
2022
, “
Dynamics of Two Unequal-Sized Drops Coalescence at a Liquid-Liquid Interface
,”
Phys. Fluids.
,
34
(
6
), p.
063604
.
39.
Gielen
,
M. V.
,
Sleutel
,
P.
,
Benschop
,
J.
,
Riepen
,
M.
,
Voronina
,
V.
,
Visser
,
C. W.
,
Lohse
,
D.
,
Snoeijer
,
J. H.
,
Versluis
,
M.
, and
Gelderblom
,
H.
,
2017
, “
Oblique Drop Impact Onto a Deep Liquid Pool
,”
Phys. Rev. Fluids
,
2
(
Aug
), p.
083602
.
40.
Mukherjee
,
S.
, and
Abraham
,
J.
,
2007
, “
Crown Behavior in Drop Impact on Wet Walls
,”
Phys. Fluids.
,
19
(
5
), p.
052103
.
41.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.
You do not currently have access to this content.