Abstract

The current research looks at the thermodynamic performance analysis of an infrared suppression (IRS) system for warships, battleships, and ocean liners. ansys fluent 15.0 is used to solve governing differential equations (Navier–Stokes equation, energy equation, and equation of turbulence). The results are then used to produce a more detailed and accurate system model. Relevant parameters vary, such as the Reynolds number (6.12 × 105 to 3.11 × 106), louver pattern, the temperature of the nozzle inlet (400–600 K), and the different types of shapes of the nozzle. The effects of nozzle exhaust fluid temperature and different funnel wall conditions (adiabatic, diabatic with and without surface radiation) on heat transfer and entropy production are considered in various quantities. The entropy generation study helps justify the proposed design of the IRS system and select the best model among the proposed designs. Both the thermal and frictional irreversibility are plotted along with the Bejan number plots and the entropy generation contours to elucidate the thermofluid behavior.

References

1.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.
2.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigations of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.
3.
Jianwei
,
L.
, and
Qiang
,
W.
,
2009
, “
Aircraft-Skin Infrared Radiation Characteristics Modeling and Analysis
,”
Chin. J. Aeronaut.
,
22
(
5
), pp.
493
497
.
4.
Chen
,
Q.
, and
Birk
,
A. M.
,
2007
, “
Experimental and CFD Study of an Exhaust Ejector With Round Entraining Diffuser
,” Proceedings of the ASME Turbo Expo, Vol. 6, Part A, Paper No. 2000-GT-0322, V001T02A002, pp.
27
35
.
5.
Thompson
,
J.
, and
Vaitekunas
,
D.
,
1998
, “
IR Signature Suppression of Modern Naval Ships 1
,”
ASNE 21st Century Combat Technology Symposium
, pp.
1
9
.
6.
Shaorong
,
Z.
,
Zhaohui
,
D.
,
Hanping
,
C.
, and
Fangyuan
,
Z.
,
2000
, “
Numerical and Experimental Study on the Suppression for the Infrared Signatures of a Marine Gas Turbine Exhaust System
,”
Proceedings of the ASME Turbo Expo
, p.
GT-0322
, V001T02A002.
7.
Hyun Im
,
J.
, and
Song
,
S.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.
8.
Sun
,
T.
,
Luan
,
Y.
,
Sun
,
L.
, and
Sun
,
P.
,
2016
, “
Research on Characteristics of a New Marine Gas Turbine Exhaust Ejector Device
,”
Proceedings of the ASME Turbo Expo
, Paper No.
GT2016-57214
, V001T22A006.
9.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.
10.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
(
22
), pp.
33
44
.
11.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.
12.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
(
2
), pp.
26
38
.
13.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Comparison Between a Conventional and a New IRS Device in Terms of Air Entrainment: An Experimental and Numerical Analysis
,”
J. Sh. Res.
,
64
(
4
), pp.
357
371
.
14.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2019
, “
Effect of Slot-Guidance and Slot-Area on Air Entrainment in a Conical Ejector Diffuser for Infrared Suppression
,”
J. Appl. Fluid Mech.
,
12
(
4
), pp.
1301
1317
.
15.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.
16.
Sakly
,
A.
, and
Ben Nejma
,
F.
,
2020
, “
Heat and Mass Transfer of Combined Forced Convection and Thermal Radiation Within a Channel: Entropy Generation Analysis
,”
Appl. Therm. Eng.
,
171
, p.
114903
.
17.
Wang
,
W.
,
Zhang
,
Y.
,
Liu
,
J.
,
Wu
,
Z.
,
Li
,
B.
, and
Sundén
,
B.
,
2018
, “
Entropy Generation Analysis of Fully-Developed Turbulent Heat Transfer Flow in Inward Helically Corrugated Tubes
,”
Numer. Heat Transf. Part A: Appl.
,
73
(
11
), pp.
788
805
.
18.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transf.
,
37
(
7
), pp.
867
872
.
19.
Abu-Hijleh
,
B. A. K.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transf.
,
42
(
22
), pp.
4225
4233
.
20.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Entropy Generation in Laminar and Turbulent Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
4
), p.
042501
.
21.
Chen
,
C. K.
,
Lai
,
H. Y.
, and
Liu
,
C. C.
,
2011
, “
Numerical Analysis of Entropy Generation in Mixed Convection Flow With Viscous Dissipation Effects in Vertical Channel
,”
Int. Commun. Heat Mass Transf.
,
38
(
3
), pp.
285
290
.
22.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2010
, “
Entropy Generation Minimization Versus Thermal Mixing Due to Natural Convection in Differentially and Discretely Heated Square Cavities
,”
Numer. Heat Transf. Part A: Appl.
,
58
(
6
), pp.
475
504
.
23.
Silva
,
R. L.
, and
Garcia
,
E. C.
,
2008
, “
Temperature and Entropy Generation Behavior in Rectangular Ducts With 3-D Heat Transfer Coupling (Conduction and Convection)
,”
Int. Commun. Heat Mass Transf.
,
35
(
3
), pp.
240
250
.
24.
Pati
,
S.
,
Roy
,
R.
,
Deka
,
N.
,
Boruah
,
M. P.
,
Nath
,
M.
,
Bhargav
,
R.
,
Randive
,
P. R.
, and
Mukherjee
,
P. P.
,
2020
, “
Optimal Heating Strategy for Minimization of Peak Temperature and Entropy Generation for Forced Convective Flow Through a Circular Pipe
,”
Int. J. Heat Mass Transf.
,
150
(
3
), p.
119318
.
25.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2006
, “
Dissipation and Entropy Generation in Fully Developed Forced and Mixed Laminar Convection
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
998
1007
.
26.
Baham
,
G. J.
,
Mccallum
,
D.
, and
Member
,
A.
,
1977
, “
Stack Design Technology for Naval and Merchant Ships
,”
Ad
,
85
, pp.
324
349
.
27.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082101
.
28.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transf.
,
123
(
8
), p.
105208
.
29.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2022
, “
Thermo-Fluid Characteristics of an IRS System With Louvered Cylindrical Diathermic Funnels Considering Surface Radiation: A Three-Dimensional Numerical Exercise
,”
Int. Commun. Heat Mass Transf.
,
135
, p.
106132
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Barik
,
A. K.
,
Mukherjee
,
A.
, and
Patro
,
P.
,
2015
, “
Heat Transfer Enhancement From a Small Rectangular Channel With Different Surface Protrusions by a Turbulent Cross Flow Jet
,”
Int. J. Therm. Sci.
,
98
, pp.
32
41
.
32.
Saedodin
,
S.
, and
Motaghedi Barforoush
,
M. S.
,
2015
, “
Experimental and Numerical Investigations on Enclosure Pressure Effects on Radiation and Convection Heat Losses From Two Finite Concentric Cylinders Using Two Radiation Shields
,”
Energy
,
90
(
1
), pp.
652
662
.
33.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2020
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transf. Part A: Appl.
,
79
(
6
), pp.
463
487
.
34.
Bejan
,
A.
, and
Kestin
,
J.
,
1983
, “
Entropy Generation Through Heat and Fluid Flow
,”
ASME J. Appl. Mech.
,
50
(
2
), pp.
475
475
.
35.
Herwig
,
H.
, and
Kock
,
F.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transf.
,
43
(
3
), pp.
207
215
.
36.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
International Journal of Thermal Sciences Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.
37.
Cao
,
Z.
,
Wu
,
Z.
,
Luan
,
H.
, and
Sunden
,
B.
,
2017
, “
Numerical Study on Heat Transfer Enhancement for Laminar Flow in a Tube With Mesh Conical Frustum Inserts
,”
Numer. Heat Transf. Part A: Appl.
,
72
(
1
), pp.
1
19
.
38.
Xie
,
G.
,
Song
,
Y.
, and
Simon
,
T. W.
,
2017
, “
Turbulent Flow Characteristics and Heat Transfer Enhancement in a Rectangular Channel With Elliptical Cylinders and Protrusions of Various Heights
,”
Numer. Heat Transf. Part A: Appl.
,
72
(
6
), pp.
417
432
.
39.
Mi
,
J.
, and
Nathan
,
G. J.
,
2010
, “
Statistical Properties of Turbulent Free Jets Issuing From Nine Differently-Shaped Nozzles
,”
Flow, Turbul. Combust.
,
84
(
4
), pp.
583
606
.
40.
Sheng
,
Z. Q.
,
Huang
,
P. L.
,
Zhao
,
T.
, and
Ji
,
J. Z.
,
2015
, “
Configurations of Lobed Nozzles for High Mixing Effectiveness
,”
Int. J. Heat Mass Transf.
,
91
, pp.
671
683
.
You do not currently have access to this content.