Abstract

This work presents a numerical investigation of the thermal control performance of a phase change material (PCM) composite-filling fin heat exchanger under natural convection and transient heat flux shocks. First, the temperature control performance of the PCM-based fin heat exchanger and the fin heat exchanger without PCM is compared. Then, the influence of the PCM filling patterns, liquid phase change temperature, and the PCM filling volume fraction on the temperature control performance are studied. The results show that filling the PCM in fins could significantly improve the temperature control performance by absorbing heat during the solid–liquid phase change process. Compared with the fin heat exchangers without PCM, the temperature control performance of the designed PCM-based fin heat exchangers could be improved by up to 13%. PCM filling patterns influence the temperature control performance of fin heat exchangers to a certain extent, and the asymmetric filling pattern is better than the symmetric filling pattern. The results of different phase change temperatures of PCM show that, within a certain temperature range, the lower the liquid phase change temperature results in a better temperature control performance since more PCM would melt when suffering the heat flux shock. Besides, when the volume fraction of PCM is small, it also greatly influences the temperature control efficiency of the heat exchanger; however, when the volume fraction of PCM is larger than 75%, its influence could be neglected.

References

1.
Bhushan
,
N.
,
Li
,
J.
,
Malladi
,
D.
,
Gilmore
,
R.
,
Brenner
,
D.
,
Damnjanovic
,
A.
,
Sukhavasi
,
R. T.
,
Patel
,
C.
, and
Geirhofer
,
S.
,
2014
, “
Network Densification: The Dominant Theme for Wireless Evolution Into 5G
,”
IEEE Commun. Mag.
,
52
(
2
), pp.
82
89
.
2.
Abrol
,
A.
, and
Jha
,
R. K.
,
2016
, “
Power Optimization in 5G Networks: A Step Towards GrEEn Communication
,”
IEEE Access
,
4
, pp.
1355
1374
.
3.
Cao
,
H.
,
Hu
,
Y.
, and
Yang
,
L.
,
2021
, “
Towards Intelligent Virtual Resource Allocation in UAVs-Assisted 5G Networks
,”
Comput. Netw.
,
185
, p.
107660
.
4.
Hicham
,
M.
,
2015
, “
Key-Concepts-of-5th-Generation-Mobile-Technology
,”
Int. J. Electr. Comput. Energetic, Electr. Commun. Eng.
,
9
(
4
), pp.
411
414
.
5.
Lu
,
Y.
, and
Zheng
,
X.
,
2020
, “
6G: A Survey on Technologies, Scenarios, Challenges, and the Related Issues
,”
J. Ind. Inf. Integr.
,
19
, p.
100158
.
6.
Israr
,
A.
,
Yang
,
Q.
,
Li
,
W.
, and
Zomaya
,
A. Y.
,
2021
, “
Renewable Energy Powered Sustainable 5G Network Infrastructure: Opportunities, Challenges and Perspectives
,”
J. Netw. Comput. Appl.
,
175
, p.
102910
.
7.
He
,
W.
,
Xu
,
B.
,
Gustafsson
,
M.
,
Ying
,
Z.
, and
He
,
S.
,
2018
, “
RF Compliance Study of Temperature Elevation in Human Head Model Around 28 GHz for 5G User Equipment Application: Simulation Analysis
,”
IEEE Access
,
6
, pp.
830
838
.
8.
Aslan
,
Y.
,
Puskely
,
J.
,
Janssen
,
J. H. J.
,
Geurts
,
M.
,
Roederer
,
A.
, and
Yarovoy
,
A.
,
2018
, “
Thermal-Aware Synthesis of 5G Base Station Antenna Arrays: An Overview and a Sparsity-Based Approach
,”
IEEE Access
,
6
, pp.
58868
58882
.
9.
Aslan
,
Y.
,
Puskely
,
J.
,
Roederer
,
A.
, and
Yarovoy
,
A.
,
2019
, “
Heat Transfer Enhancement in Passively Cooled 5G Base Station Antennas Using Thick Ground Planes
,”
Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP)
,
Krakow, Poland
,
Mar. 31–Apr. 5
, pp.
1
5
.
10.
Aslan
,
Y.
,
Puskely
,
J.
,
Roederer
,
A.
, and
Yarovoy
,
A.
,
2020
, “
Multiple Beam Synthesis of Passively Cooled 5G Planar Arrays Using Convex Optimization
,”
IEEE Trans. Antennas Propag.
,
68
(
5
), pp.
3557
3566
.
11.
Zhang
,
S.
,
Feng
,
D.
,
Shi
,
L.
,
Wang
,
L.
,
Jin
,
Y.
,
Tian
,
L.
,
Li
,
Z.
,
Wang
,
G.
,
Zhao
,
L.
, and
Yan
,
Y.
,
2021
, “
A Review of Phase Change Heat Transfer in Shape-Stabilized Phase Change Materials (Ss-PCMs) Based on Porous Supports for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110127
.
12.
Joshi
,
V.
, and
Rathod
,
M. K.
,
2020
, “
Experimental and Numerical Assessments of Thermal Transport in Fins and Metal Foam Infused Latent Heat Thermal Energy Storage Systems: A Comparative Evaluation
,”
Appl. Therm. Eng.
,
178
, p.
115518
.
13.
Mazhar
,
A. R.
,
Shukla
,
A.
, and
Liu
,
S.
,
2020
, “
Numerical Analysis of Rectangular Fins in a PCM for Low-Grade Heat Harnessing
,”
Int. J. Therm. Sci.
,
152
, p.
106306
.
14.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
15.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, “
Parametric Investigation to Optimize the Thermal Management of Pouch Type Lithium-Ion Batteries With Mini-Channel Cold Plates
,”
Int. J. Heat Mass Transfer
,
164
, p.
120568
.
16.
Zhao
,
C.
,
Opolot
,
M.
,
Liu
,
M.
,
Bruno
,
F.
,
Mancin
,
S.
, and
Hooman
,
K.
,
2020
, “
Numerical Study of Melting Performance Enhancement for PCM in an Annular Enclosure With Internal-External Fins and Metal Foams
,”
Int. J. Heat Mass Transfer
,
150
, p.
119348
.
17.
Mhiri
,
H.
,
Jemni
,
A.
, and
Sammouda
,
H.
,
2020
, “
Numerical and Experimental Investigations of Melting Process of Composite Material (NanoPCM/Carbon Foam) Used for Thermal Energy Storage
,”
J. Energy Storage
,
29
, p.
101167
.
18.
Mao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Thermal Energy Storage Performance of a Three-PCM Cascade Tank in a High-Temperature Packed Bed System
,”
Renewable Energy
,
152
, pp.
110
119
.
19.
Kok
,
B.
,
2020
, “
Examining Effects of Special Heat Transfer Fins Designed for the Melting Process of PCM and Nano-PCM
,”
Appl. Therm. Eng.
,
170
, p.
114989
.
20.
Dhaidan
,
N. S.
,
2017
, “
Nanostructures Assisted Melting of Phase Change Materials in Various Cavities
,”
Appl. Therm. Eng.
,
111
, pp.
193
212
.
21.
Elbahjaoui
,
R.
, and
El Qarnia
,
H.
,
2017
, “
Transient Behavior Analysis of the Melting of Nanoparticle-Enhanced Phase Change Material Inside a Rectangular Latent Heat Storage Unit
,”
Appl. Therm. Eng.
,
112
, pp.
720
738
.
22.
Zhang
,
L.
,
Yang
,
W.
,
Jiang
,
Z.
,
He
,
F.
,
Zhang
,
K.
,
Fan
,
J.
, and
Wu
,
J.
,
2017
, “
Graphene Oxide-Modified Microencapsulated Phase Change Materials With High Encapsulation Capacity and Enhanced Leakage-Prevention Performance
,”
Appl. Energy
,
197
, pp.
354
363
.
23.
Zhao
,
Y.
,
Jin
,
L.
,
Zou
,
B.
,
Qiao
,
G.
,
Zhang
,
T.
,
Cong
,
L.
,
Jiang
,
F.
,
Li
,
C.
,
Huang
,
Y.
, and
Ding
,
Y.
,
2020
, “
Expanded Graphite—Paraffin Composite Phase Change Materials: Effect of Particle Size on the Composite Structure and Properties
,”
Appl. Therm. Eng.
,
171
, p.
115015
.
24.
Xu
,
T.
,
Li
,
Y.
,
Chen
,
J.
,
Wu
,
H.
,
Zhou
,
X.
, and
Zhang
,
Z.
,
2018
, “
Improving Thermal Management of Electronic Apparatus With Paraffin (PA)/Expanded Graphite (EG)/Graphene (GN) Composite Material
,”
Appl. Therm. Eng.
,
140
, pp.
13
22
.
25.
Huang
,
Z.
,
Xie
,
N.
,
Zheng
,
X.
,
Gao
,
X.
,
Fang
,
X.
,
Fang
,
Y.
, and
Zhang
,
Z.
,
2019
, “
Experimental and Numerical Study on Thermal Performance of Wood’s Alloy/Expanded Graphite Composite Phase Change Material for Temperature Control of Electronic Devices
,”
Int. J. Therm. Sci.
,
135
, pp.
375
385
.
26.
Ren
,
Q.
,
Guo
,
P.
, and
Zhu
,
J.
,
2020
, “
Thermal Management of Electronic Devices Using Pin-Fin Based Cascade Microencapsulated PCM/Expanded Graphite Composite
,”
Int. J. Heat Mass Transfer
,
149
, p.
119199
.
27.
Zhao
,
C.
,
Opolot
,
M.
,
Liu
,
M.
,
Bruno
,
F.
,
Mancin
,
S.
,
Flewell-Smith
,
R.
, and
Hooman
,
K.
,
2021
, “
Simulations of Melting Performance Enhancement for a PCM Embedded in Metal Periodic Structures
,”
Int. J. Heat Mass Transfer
,
168
, p.
120853
.
28.
Raj
,
C. R.
,
Suresh
,
S.
,
Bhavsar
,
R. R.
,
Singh
,
V. K.
, and
Govind
,
K. A.
,
2020
, “
Influence of Fin Configurations in the Heat Transfer Effectiveness of Solid PCM Based Thermal Control Module for Satellite Avionics: Numerical Simulations
,”
J. Energy Storage
,
29
, p.
101332
.
29.
Yazici
,
M. Y.
,
Avci
,
M.
, and
Aydin
,
O.
,
2019
, “
Combined Effects of Inclination Angle and Fin Number on Thermal Performance of a PCM-Based Heat Sink
,”
Appl. Therm. Eng.
,
159
, p.
113956
.
30.
Pakalka
,
S.
,
Valančius
,
K.
, and
Streckienė
,
G.
,
2021
, “
Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger
,”
Energies
,
14
(
3
), p.
716
.
31.
Kim
,
S.-H.
,
Heu
,
C. S.
,
Kim
,
D. R.
, and
Kang
,
S.-W.
,
2020
, “
Numerical Modeling and Experimental Validation of a Phase Change Material-Based Compact Cascade Cooling System for Enhanced Thermal Management
,”
Appl. Therm. Eng.
,
164
, p.
114470
.
32.
Desai
,
A. N.
,
Gunjal
,
A.
, and
Singh
,
V. K.
,
2020
, “
Numerical Investigations of Fin Efficacy for Phase Change Material (PCM) Based Thermal Control Module
,”
Int. J. Heat Mass Transfer
,
147
, p.
118855
.
33.
Debich
,
B.
,
El Hami
,
A.
,
Yaich
,
A.
,
Gafsi
,
W.
,
Walha
,
L.
, and
Haddar
,
M.
,
2020
, “
Design Optimization of PCM-Based Finned Heat Sinks for Mechatronic Components: A Numerical Investigation and Parametric Study
,”
J. Energy Storage
,
32
, p.
101960
.
34.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in a Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
.
35.
Marri
,
G. K.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2020
, “
Effect of Phase Change and Ambient Temperatures on the Thermal Performance of a Solid-Liquid Phase Change Material Based Heat Sinks
,”
J. Energy Storage
,
30
, p.
101327
.
36.
Taghilou
,
M.
, and
Khavasi
,
E.
,
2020
, “
Thermal Behavior of a PCM Filled Heat Sink: The Contrast Between Ambient Heat Convection and Heat Thermal Storage
,”
Appl. Therm. Eng.
,
174
, p.
115273
.
37.
Mozafari
,
M.
,
Lee
,
A.
, and
Mohammadpour
,
J.
,
2021
, “
Thermal Management of Single and Multiple PCMs Based Heat Sinks for Electronics Cooling
,”
Ther. Sci. Eng. Prog.
,
23
, p.
100919
.
38.
Dammak
,
K.
, and
El Hami
,
A.
,
2021
, “
Thermal Reliability-Based Design Optimization Using Kriging Model of PCM Based Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
166
, p.
120745
.
39.
Kothari
,
R.
,
Sahu
,
S. K.
,
Kundalwal
,
S. I.
, and
Sahoo
,
S. P.
,
2021
, “
Experimental Investigation of the Effect of Inclination Angle on the Performance of Phase Change Material Based Finned Heat Sink
,”
J. Energy Storage
,
37
, p.
102462
.
40.
Sathe
,
T.
, and
Dhoble
,
A. S.
,
2019
, “
Thermal Analysis of an Inclined Heat Sink With Finned PCM Container for Solar Applications
,”
Int. J. Heat Mass Transfer
,
144
, p.
118679
.
41.
Kalbasi
,
R.
,
Afrand
,
M.
,
Alsarraf
,
J.
, and
Tran
,
M.-D.
,
2019
, “
Studies on Optimum Fins Number in PCM-Based Heat Sinks
,”
Energy
,
171
, pp.
1088
1099
.
42.
Moses
,
A. T. Z.
, and
Moses
,
N.
,
2021
, “
Compact Self Decoupled MIMO Antenna Pairs Covering 3.4–3.6 GHz Band for 5G Handheld Device Applications
,”
AEU - Int. J. Electron. Commun.
,
141
, p.
153971
.
43.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2019
, “
3D Numerical Study of Natural Convection Heat Transfer From a Hollow Horizontal Cylinder Placed on the Ground
,”
Int. J. Therm. Sci.
,
140
, pp.
429
441
.
44.
Arshad
,
A.
,
Ibrahim Alabdullatif
,
M.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2021
, “
Towards the Thermal Management of Electronic Devices: A Parametric Investigation of Finned Heat Sink Filled With PCM
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105643
.
45.
Wang
,
X.-Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2008
, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1055
1068
.
46.
Shahsavar
,
A.
,
Goodarzi
,
A.
,
Mohammed
,
H. I.
,
Shirneshan
,
A.
, and
Talebizadehsardari
,
P.
,
2020
, “
Thermal Performance Evaluation of Non-uniform Fin Array in a Finned Double-Pipe Latent Heat Storage System
,”
Energy
,
193
, p.
116800
.
47.
Li
,
Y.
,
Gong
,
L.
,
Lu
,
H.
,
Zhang
,
D.
, and
Ding
,
B.
,
2020
, “
Thermal Modeling and Analysis of Metal Foam Heat Sink With Thermal Equilibrium and Non-equilibrium Models
,”
Comput. Model. Eng. Sci.
,
123
(
2
), pp.
895
912
.
48.
Hung
,
T.-C.
,
Huang
,
Y.-X.
, and
Yan
,
W.-M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Different Configuration Designs
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.
49.
Hung
,
T.-C.
,
Huang
,
Y.-X.
, and
Yan
,
W.-M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.
50.
Mostafavi
,
A.
, and
Jain
,
A.
,
2022
, “
Thermal Management Effectiveness and Efficiency of a Fin Surrounded by a Phase Change Material (PCM)
,”
Int. J. Heat Mass Transfer
,
191
, p.
122630
.
51.
Arshad
,
A.
,
Jabbal
,
M.
,
Sardari
,
P. T.
,
Bashir
,
M. A.
,
Faraji
,
H.
, and
Yan
,
Y.
,
2020
, “
Transient Simulation of Finned Heat Sinks Embedded With PCM for Electronics Cooling
,”
Ther. Sci. Eng. Prog.
,
18
, p.
100520
.
52.
Liu
,
D.
,
Xie
,
K.
,
Zhang
,
H.
,
Qiang
,
Y.
,
Yang
,
D.
,
Wang
,
Z.
,
Zhu
,
L.
, et al
,
2022
, “
Numerical Evaluation of Convective Heat Transfer Properties of Two-Dimensional Rotating PCM Melt in the Unilaterally Heated Rectangular Container
,”
Renewable Energy
,
193
, pp.
920
940
.
53.
Kamkari
,
B.
, and
Groulx
,
D.
,
2018
, “
Experimental Investigation of Melting Behaviour of Phase Change Material in Finned Rectangular Enclosures Under Different Inclination Angles
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
94
108
.
You do not currently have access to this content.