Abstract

A mathematical model for hybrid nanofluid is proposed to study the influence of oblique magnetic field and thermal radiation on an exponentially elongated sheet. A comparison of the thermal characteristics of the hybrid nanofluid and the mono nanofluids (Al2O3 /water and TiO2/water) is made. The governing flow equations are transformed into a system of ODEs with the assistance of similarity variables and are then computationally addressed using bvp4c.The graphs are displayed for velocity, heat measure, and reduced frictional coefficients for selected flow parameters. Hybrid nanofluid has 1–4% growth in the rate of heat transfer when compared to mono nanofluid while it is 1–4.5% in comparison to viscous fluid for increasing radiation parameter. The outcomes of this work revealed that the heat transfer as a consequence of the dispersion of dual nanomaterials is more promising than the mono nanofluid. To accomplish very effective cooling/heating in industrial and engineering applications, hybrid nanofluids can substitute mono nanofluids.

References

1.
Babar
,
H.
, and
Ali
,
H. M.
,
2019
, “
Towards Hybrid Nanofluids: Preparation, Thermo-physical Properties, Applications and Challenges
,”
J. Mol. Liq.
,
28
, pp.
598
633
.
2.
Siddik
,
N. A. C.
,
Muhammad
,
M. J.
,
Wan
,
M. A. A. J.
, and
Isa
,
M. A.
,
2017
, “
A Review on Preparation Methods, Stability and Applications of Hybrid Nanofluid
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
1112
1122
.
3.
Kumar
,
D. D.
, and
Arasu
,
A. V.
,
2018
, “
A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluid
,”
Renewable Sustainable Energy Rev.
,
81
(
2
), pp.
1779
1689
.
4.
Tayyab
,
R. S.
, and
Hafiz
,
M. A.
,
2019
, “
Applications of Hybrid Nanofluids in Solar Energy, Practical Limitations and Challenges: A Critical Review
,”
Sol. Energy
,
183
, pp.
173
203
.
5.
Ahmadi
,
M. H.
,
Ghazvini
,
M.
,
Sadeghzadeh
,
M.
,
Nazari
,
M. A.
, and
Ghalandari
,
M.
,
2019
, “
Utilization of Hybrid Nanofluids in Solar Energy Applications: A Review
,”
Nano-Struct. Nano-Objects
,
20
, p.
100386
.
6.
Minea
,
A. A.
, and
El-Maghlany
,
W. M.
,
2018
, “
Influence of Hybrid Nanofluids on the Performance of Parabolic Trough Collectors in Solar Thermal Systems: Recent Findings and Numerical Comparison, Renew
,”
Energy
,
120
(
7
), pp.
350
364
.
7.
Ganesh Kumar
,
K.
,
Bani Hani
,
E. H.
,
Assad
,
M. E. H.
,
Gorji
,
M. R.
, and
Nadeem
,
S.
,
2021
, “
A Noval Approach for Investigation of Heat Transfer Enhancement With Ferromagnetic Hybrid Nanofluid by Considering Solar Radiation
,”
Microsyst. Technol.
,
97
, pp.
97
104
.
8.
Maddah
,
H.
,
Aghayari
,
R.
,
Mirzaee
,
M.
,
Ahmadi
,
M. H.
,
Sadeghzadeh
,
M.
, and
Chamkha
,
A. J.
,
2018
, “
Factorial Experimental Design for the Thermal Performance of a Double Pipe Heat Exchanger Using Al2O3-TiO2 Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
92
102
.
9.
Mabood
,
F.
,
Yusuf
,
T. A.
, and
Khan
,
W. A.
,
2021
, “
Cu-Al2O3-H2O Hybrid Nanofluid Flow With Melting Heat Transfer Irreversibility Analysis and Nonlinear Thermal Radiation
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
973
984
.
10.
Ullah
,
I.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2019
, “
Dissipative Flow of Hybrid Nanoliquid (H2O-Aluminum Alloy Nanoparticles) With Thermal Radiation
,”
Phys. Scr.
,
94
(
12
), p.
125708
.
11.
Hussain
,
S.
,
Ahmed
,
S. E.
, and
Akbar
,
T.
,
2017
, “
Entropy Generation Analysis in MHD Mixed Convection of Hybrid Nanofluid in an Open Cavity With a Horizontal Channel Containing an Adiabatic Obstacle
,”
Int. J. Heat Mass Transfer
,
114
, pp.
1054
1066
.
12.
Ramesh
,
G. K.
,
Manjunatha
,
S.
,
Roopa
,
G. S.
, and
Chamkha
,
A. J.
,
2021
, “
Hybrid (ND-Co3O4/EG) Nanoliquid Through a Permeable Cylinder Under Homogeneous-Heterogeneous Reactions and Slip Effects
,”
J. Therm. Anal. Calorim.
,
146
(
3
), pp.
1347
1357
.
13.
Ramesh
,
K.
,
2016
, “
Influence of Heat and Mass Transfer on Peristaltic Flow of a Couple Stress Fluid Through Porous Medium in the Presence of Inclined Magnetic Field in an Inclined Asymmetric Channel
,”
J. Mol. Liq.
,
219
, pp.
256
271
.
14.
Noreen
,
S.
, and
Qasim
,
M.
,
2014
, “
Peristaltic Flow With Inclined Magnetic Field and Convective Boundary Conditions
,”
Appl. Bionics Biomech.
,
11
(
1–2
), pp.
61
67
.
15.
Hussain
,
S.
,
Armaghani
,
T.
, and
Jamal
,
M.
,
2019
, “
Magnetoconvection and Entropy Analysis in T-Shaped Porous Enclosure Using Finite Element Method
,”
J. Thermophys. Heat Transfer
, pp.
1
12
.
16.
Izadi
,
M.
,
Mohebbi
,
R.
,
Delouei
,
A. A.
, and
Sajjadi
,
H.
,
2019
, “
Natural Convection of a Magnetisable Hybrid Nanofluid Inside a Porous Enclosure Subjected to Two Variable Magnetic Fields
,”
Int. J. Mech. Sci.
,
151
, pp.
154
169
.
17.
Sheikholeslami
,
M.
,
Mehryan
,
S. A. M.
,
Shafee
,
A.
, and
Sheremet
,
M. A.
,
2019
, “
Variable Magnetic Forces Impact on Magnetisable Hybrid Nanofluid Heat Transfer Through a Circular Cavity
,”
J. Mol. Liq.
,
277
, pp.
388
396
.
18.
Faisal Md Basir
,
M.
,
Mabood
,
F.
,
Satya Narayana
,
P. V.
,
Venkateswarlu
,
B.
, and
Ismail
,
A. I. M.
,
2020
, “
Significance of Viscous Dissipation on the Dynamics of Ethylene Glycol Conveying Diamond and Silica Nanoparticles Through a Diverging and Converging Channel
,”
J. Therm. Anal. Calorim.
, pp.
1
14
.
19.
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2021
, “
Cu-Al2O3/H2O Hybrid Nanofluid Flow Past a Porous Stretching Sheet due to Temperature Dependent Viscosity and Viscous Dissipation
,”
Heat Transfer
,
50
(
1
), pp.
432
449
.
20.
Mehryan
,
S. A. M.
,
Sheremet
,
M. A.
,
Soltani
,
M.
, and
Izadi
,
M.
,
2019
, “
Natural Convection of Magnetic Hybrid Nanofluid Inside a Double-Porous Medium Using Two-Equation Energy Model
,”
J. Mol. Liq.
,
277
, pp.
959
970
.
21.
Mehryan
,
S. A. M.
,
Izadi
,
M.
,
Namazian
,
Z.
, and
Chamkha
,
A. J.
,
2019
, “
Natural Convection of Multi-walled Carbon Nanotube-Fe3O4/Water Magnetic Hybrid Nanofluid Flowing in Porous Medium Considering the Impacts of Magnetic Field-Dependent Viscosity
,”
J. Therm. Anal. Calorim.
,
138
(
2
), pp.
1541
1555
.
22.
Mansour
,
M. A.
,
Siddiqa
,
S.
,
Rama Subba Reddy
,
G.
, and
Rashad
,
A. M.
,
2018
, “
Effects of Heat Source and Sink on Entropy Generation and MHD Natural Convection of Al2O3–Cu/Water Hybrid Nanofluid Filled with Square Porous Cavity
,”
Ther. Sci. Eng. Prog.
,
6
, pp.
57
71
.
23.
Ghobadi
,
A. H.
, and
Hassankolaei
,
M. G.
,
2019
, “
A Numerical Approach for MHD Al2O3-TiO2/H2O Hybrid Nanofluids Over a Stretching Cylinder Under the Impact of Shape Factor
,”
Heat Transfer-Asian Res.
,
48
(
8
), pp.
4262
4282
.
24.
Chamkha
,
A. J.
,
Dogonchi
,
A. S.
, and
Ganji
,
D. D.
,
2019
, “
Magneto-hydrodynamic Flow and Heat Transfer of Hybrid Nanofluid in a Rotating System Among Two Surfaces in the Presence of Thermal Radiation and Joule Heating
,”
AIP Adv.
,
9
(
2
), p.
02510
.
25.
Hussain
,
S.
, and
Ahmed
,
S. E.
,
2019
, “
Unsteady MHD Forced Convection Over a Backward Facing Step Including a Rotating Cylinder Utilizing Fe3O4-Water Ferrofluid
,”
J. Magn. Magn. Mater.
,
484
, pp.
356
366
.
26.
Hayat
,
T.
,
Nadeem
,
S.
, and
Khan
,
A. U.
,
2018
, “
Rotating Flow of Ag-CuO/H2O Hybrid Nanofluid With Radiation and Partial Slip Boundary Effects
,”
Eur. Phys. J. E
,
41
(
6
), pp.
1
9
.
27.
Taraka Ramu
,
N.
,
Satya Narayana
,
P. V.
, and
Venkateswarlu
,
B.
,
2019
, “
MHD Three Dimensional Darcy-Forchheimer Flow of a Nanofluid With Non-linear Thermal Radiation
,”
Appl. Math. Sci. Comput.
, pp.
87
97
.
28.
Harish Babu
,
D.
,
Ajmath
,
K. A.
,
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2018
, “
Thermal Radiation and Heat Source Effects on MHD Non-Newtonian Nanofluid Flow Over a Stretching Sheet
,”
J. Nanofluids
,
8
(
5
), pp.
1085
1092
.
29.
Hussain
,
S.
,
2017
, “
Finite Element Solution for MHD Flow of Nanofluids with Heat and Mass Transfer Through a Porous Media With Thermal Radiation, Viscous Dissipation and Chemical Reaction Effects
,”
Adv. Appl. Math. Mech.
,
9
(
4
), pp.
904
923
.
30.
Satya Narayana
,
P. V.
,
Venkateswarlu
,
B.
, and
Venkataramana
,
S.
,
2015
, “
Thermal Radiation and Heat Source Effects on a MHD Nanofluid Past a Vertical Plate in a Rotating System With Porous Medium
,”
Heat Transfer.-Asian Res.
,
44
(
1
), pp.
1
19
.
31.
Kumaraswamy Naidu
,
K.
,
Harish Babu
,
D.
,
Harinath Reddy
,
S.
, and
Satya Narayana
,
P. V.
,
2021
, “
Radiation and Partial Slip Effects on Magnetohydrodynamic Jeffrey Nanofluid Containing Gyrotactic Microorganisms Over a Stretching Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031011
.
32.
Hussain
,
S.
, and
Ahmed
,
S. E.
,
2019
, “
Steady Natural Convection in Open Cavities Filled With a Porous Medium Utilizing Buongiorno’s Nanofluid Model
,”
Int. J. Mech. Sci.
,
157
, pp.
692
702
.
33.
Satya Narayana
,
P. V.
,
Tarakaramu
,
N.
,
Sarojamma
,
G.
, and
Animasaun
,
I. L.
,
2021
, “
Numerical Simulation of Nonlinear Thermal Radiation on the 3D Flow of a Couple Stress Casson Nanofluid Due to a Stretching Sheet
,”
J. Therm. Sci. Eng. Appl.
,
13
(
2
), pp.
1
10
.
34.
Abbas
,
N.
,
Nadeem
,
S.
,
Saleem
,
A.
,
Malik
,
M. Y.
,
Issakhov
,
A.
, and
Alharabi
,
F. M.
,
2021
, “
Models Base Study of Inclined MHD of Hybrid Nanofluid Flow Over Nonlinear Stretching Cylinder
,”
Chin. J. Phys.
,
69
, pp.
109
117
.
35.
Ayub
,
A.
,
Sabir
,
Z.
,
Le
,
D. N.
, and
Aly
,
A. A.
,
2021
, “
Nanoscale Heat and Mass Transport of Magnetized 3-D Chemically Radiative Hybrid Nanofluid With Orthogonal/Inclined Magnetic Field Along Rotating Sheet
,”
Case Stud. Therm. Eng.
,
26
, pp.
1
15
.
36.
Ayub
,
A.
,
Darvesh
,
A.
,
Altamirano
,
G. C.
, and
Sabir
,
Z.
,
2021
, “
Nanoscale Energy Transport of Inclined Magnetized 3D Hybrid Nanofluid With Lobatto IIIA Scheme
,”
Heat Transfer
,
50
(
7
), pp.
1
26
.
37.
Saif
,
R. S.
,
Muhammad
,
T.
, and
Sadia
,
H.
,
2020
, “
Significance of Inclined MHD in Darcy-Forchheimer Flow With Variable Porosity and Thermal Conductivity
,”
Phys. A
,
551
, pp.
1
12
.
38.
Anuar
,
N. S.
,
Bachok
,
N.
, and
Pop
,
I.
,
2021
, “
Influence of Buoyancy Force on Ag-MgO/Water Hybrid Nanofluid Flow in an Inclined Permeable Stretching/Shrinking Sheet
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105236
.
39.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
,
2017
, “
MHD Flow Over Exponential Radiating Stretching Sheet Using Homotopy Analysis Method
,”
J. King Saud Univ., Eng. Sci.
,
29
(
1
), pp.
68
74
.
40.
Ishak
,
A.
,
2011
, “
MHD Boundary Layer Flow Due to an Exponentially Stretching Sheet With Radiation Effect
,”
Sains Malays.
,
40
(
4
), pp.
391
395
.
41.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface
,”
J. Phys. D: Appl. Phys.
,
32
(
5
), pp.
577
585
.
42.
Bidin
,
B.
, and
Nazar
,
R.
,
2009
, “
Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet With Thermal Radiation
,”
Eur. J. Sci. Res.
,
33
(
4
), pp.
10
17
.
43.
El-Aziz
,
M. A.
,
2009
, “
Viscous Dissipation Effect on Mixed Convection Flow of a Micropolar Fluid Over an Exponentially Stretching Sheet
,”
Can. J. Phys.
,
87
(
4
), pp.
359
368
.
44.
Swati
,
M.
,
2013
, “
Slip Effects on MHD Boundary Layer Flow Over an Exponentially Stretching Sheet With Suction/Blowing and Thermal Radiation
,”
Ain Shams Eng. J.
,
4
(
3
), pp.
485
491
.
45.
Dinarvand
,
S.
,
Rostami
,
M. N. A.
, and
Pop
,
I.
,
2019
, “
A Novel Hybridity Model for TiO2-CuO/Water Hybrid Nanofluid Flow Over a Static/Moving Wedge or Corner
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
You do not currently have access to this content.