Abstract

This paper presents a systematic analysis of the thermodynamic performance of spiral turns in spiral plate heat exchangers (SPHEs), including non-adiabatic sources such as effects of heat leakage to the environment and fluid friction. These sources can reduce the thermal performance and increase the irreversibility of SPHEs. First, the critical factors of the heat loss rate to the environment, internal heat transfer rate (HTR), and channel temperature distributions are specified based on modeling the SPHE with hypothetical heat exchanger networks. Also, this modeling is validated with the results of channel temperature distributions by computational fluid dynamics simulation. Second, besides examining the spiral turns by entropy generation methods, entransy-based parameters are developed to analyze the SPHEs based on generated heat due to fluid viscosity in their channels for the first time. Finally, to show the method applicability proposed, an optimal designed single-phase counter-current SPHE is explored as a case. Three scenarios are introduced to evaluate the performance and irreversibility, namely heat leakage and no heat leakage to the environment and transferring the net heat between the streams. Results highlight the effects of non-adiabatic conditions, such as reductions of around 5.46%, 2.25%, and 2.42%, respectively, in the heat transfer area, total HTR, and overall heat transfer coefficient. Furthermore, findings confirm the performance reductions and irreversibility increments in non-adiabatic conditions and assert the importance of covering the outermost channels appropriately.

References

1.
Rostami
,
S.
,
Aghaei
,
A.
,
Hezaveh
,
H. M.
,
Ali
,
H. M.
, and
Shasavar Goldanlou
,
A.
,
2020
, “
Nusselt Number and Friction Factor Variations in a Capsule Heat Exchanger Filled With Eco-Friendly Jatropha Seed Oil-Based Multi-Walled Carbon Nanotubes Nanofluid
,”
Math. Methods Appl. Sci.
, pp.
1
15
.
2.
Afzal
,
A.
,
Islam
,
M. T.
,
Kaladgi
,
A. R.
,
Manokar
,
A. M.
,
Samuel
,
O. D.
,
Mujtaba
,
M. A.
,
Elahi
,
M.
,
Soudagar
,
M.
,
Fayaz
,
H.
, and
Ali
,
H. M.
,
2021
, “
Experimental Investigation on the Thermal Performance of Inserted Helical Tube Three-Fluid Heat Exchanger Using Graphene/Water Nanofluid
,”
J. Therm. Anal. Calorim.
3.
Usman
,
M. M.
,
Sajid
,
K. M.
,
Haseeb
,
Y.
,
Ahmad
,
J. M.
,
Basit
,
S. M.
, and
Ali
,
H. M.
,
2021
, “
Exergy Destruction Rate Minimization in the Absorber of a Double Effect Vapor Absorption System
,”
Therm. Sci.
, pp.
222
222
.
4.
Khan
,
M. K.
,
Abid
,
M.
,
Amber
,
K. P.
,
Ali
,
H. M.
,
Yan
,
M.
, and
Javed
,
S.
,
2021
, “
Numerical Performance Investigation of Parabolic Dish Solar-Assisted Cogeneration Plant Using Different Heat Transfer Fluids
,”
Int. J. Photoenergy
,
2021
, p.
5512679
.
5.
Krishnaswamy
,
K.
,
Sivan
,
S.
,
Ali
,
H. M.
, and
Coccia
,
G.
,
2021
, “
Influence of Narrow Rectangular Channel (AR = 1:4) on Heat Transfer and Friction for V- and W-Shaped Ribs in Turbine Blade Applications
,”
Int. J. Photoenergy
,
2021
, p.
5581081
.
6.
Turkyilmazoglu
,
M.
,
2019
, “
Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
11
), p.
114501
.
7.
Kuppan
,
T.
,
2013
,
Heat Exchanger Design Handbook
, 2nd ed.,
CRC Press—Taylor and Francis Group
,
New York
.
8.
Minton
,
P. E.
,
1970
, “
Designing Spiral-Plate Heat Exchangers
,”
Chem. Eng.
,
77
(
May
), pp.
103
112
.
9.
Martin
,
H.
,
1992
,
Heat Exchangers
, 1st ed.,
CRC Press—Taylor and Francis Group
,
Washington, DC
.
10.
Dongwu
,
W.
,
2003
, “
Geometric Calculations of the Spiral Heat Exchanger
,”
Chem. Eng. Technol.
,
26
(
5
), pp.
592
598
.
11.
Picon Nunez
,
M.
,
Canizalez Davalos
,
L.
,
Martinez Rodriguez
,
G.
, and
Polley
,
G. T.
,
2007
, “
Shortcut Design Approach for Spiral Heat Exchangers
,”
Food Bioprod. Process.
,
85
(
4
), pp.
322
327
.
12.
Picon Nunez
,
M.
,
Canizalez Davalos
,
L.
, and
Medina Flores
,
J. M.
,
2009
, “
Alternative Sizing Methodology for Compact Heat Exchangers of the Spiral Type
,”
Heat Transfer Eng.
,
30
(
9
), pp.
744
750
.
13.
Davalos
,
L. C.
,
Luna
,
E. M.
,
Angeles
,
M. A. R.
, and
Delgado
,
V. J. C.
,
2019
,
Low-Temperature Technologies
,
T.
Morosuk
, and
M.
Sultan
, eds.,
IntechOpen
,
Online
, pp.
207
222
.
14.
Sabouri Shirazi
,
A. H.
,
Jafari Nasr
,
M. R.
, and
Ghodrat
,
M.
,
2020
, “
Effects of Temperature Differences in Optimization of Spiral Plate Heat Exchangers
,”
Process Integr. Optim. Sustain.
,
4
(
4
), pp.
391
409
.
15.
Polley
,
G. T.
,
Panjeh Shahi
,
M. H.
, and
Picon Nunez
,
M.
,
1991
, “
Rapid Design Algorithms for Shell-and-Tube and Compact Heat Exchanger
,”
Chem. Eng. Res. Des.
,
69
(
A
), pp.
435
444
.
16.
Chowdhury
,
K.
,
Linkmeyer
,
H.
,
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1985
, “
Analytical Studies on the Temperature Distribution in Spiral Plate Heat Exchangers: Straightforward Design Formulae for Efficiency and Mean Temperature Difference
,”
Chem. Eng. Process.
,
19
(
4
), pp.
183
190
.
17.
Bes
,
T.
, and
Roetzel
,
W.
,
1993
, “
Thermal Theory for Spiral Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
765
773
.
18.
Burmeister
,
L. C.
,
2006
, “
Effectiveness of a Spiral-Plate Heat Exchanger With Equal Capacitance Rates
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
295
301
.
19.
Nguyen
,
D. K.
, and
San
,
Y. J.
,
2011
, “
Heat Transfer Performance of a Spiral Heat Exchanger
,”
Proceedings of the 28th National Conference on Mechanical Engineering of CSME
,
Taichung, Taiwan
,
Dec. 10–11
, pp. A01–008.
20.
Nguyen
,
D. K.
, and
San
,
Y. J.
,
2015
, “
Effect of Solid Heat Conduction on Heat Transfer Performance of a Spiral Heat Exchanger
,”
Appl. Therm. Eng.
,
76
(
5
), pp.
400
409
.
21.
Garcia
,
M. M.
, and
Moreles
,
M. A.
,
2012
, “
A Numerical Method for Rating Thermal Performance in Spiral Heat Exchangers
,”
Mod. Appl. Sci.
,
6
(
6
), pp.
54
63
.
22.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counter Flow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
3
), pp.
374
380
.
23.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
, 1st ed.,
CRC Press—Taylor and Francis Group
,
Boca Raton, FL
.
24.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.
25.
Ogiso
,
K.
,
2003
, “
Duality of Heat Exchanger Performance in Balanced Counter-Flow Systems
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
530
532
.
26.
Shah
,
R. K.
, and
Skiepko
,
T.
,
2004
, “
Entropy Generation Extrema and Their Relationship With Heat Exchanger Effectiveness-Number of Transfer Unit Behaviour for Complex Flow Arrangements
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
6
), pp.
994
1002
.
27.
Bejan
,
A.
,
1988
,
Advanced Engineering Thermodynamics
, 1st ed.,
John Wiley & Sons
,
New York
.
28.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
, 1st ed.,
Butterworth
,
London, UK
.
29.
Cheng
,
X. T.
,
2013
, “
Entropy Resistance Minimization: An Alternative Method for Heat Exchanger Analyses
,”
Energy
,
58
(
C
), pp.
672
678
.
30.
Sabouri Shirazi
,
A. H.
,
Ghodrat
,
M.
, and
Jafari Nasr
,
M. R.
,
2020
, “
Performance and Irreversibility Analysis of Spiral Plate Heat Exchangers
,”
Energy Technol.
,
8
(
12
), p.
2000727
.
31.
Bahiraei
,
M.
, and
Mazaheri
,
N.
,
2021
, “
A Comprehensive Analysis for Second Law Attributes of Spiral Heat Exchanger Operating With Nanofluid Using Two-Phase Mixture Model: Exergy Destruction Minimization Attitude
,”
Adv. Powder Technol.
,
32
(
1
), pp.
211
224
.
32.
Milovancevic
,
U. M.
,
Jacimovic
,
B. M.
,
Genic
,
S. B.
,
El-Sagier
,
F.
,
Otovic
,
M. M.
, and
Stevanovic
,
S. M.
,
2019
, “
Thermoeconomic Analysis of Spiral Heat Exchanger With Constant Wall Temperature
,”
Therm. Sci.
,
23
(
1
), pp.
401
410
.
33.
Mazaheri
,
N.
, and
Bahiraei
,
M.
,
2021
, “
Energy, Exergy, and Hydrodynamic Performance of a Spiral Heat Exchanger: Process Intensification by a Nanofluid Containing Different Particle Shapes
,”
Chem. Eng. Process.
,
166
(
3
), p.
108481
.
34.
Guo
,
Z. Y.
,
Zhu
,
H. Y.
, and
Liang
,
X. G.
,
2007
, “
Entransy—A Physical Quantity Describing Heat Transfer Ability
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2545
2556
.
35.
Li
,
X. F.
,
Guo
,
J. F.
,
Xu
,
M. T.
, and
Cheng
,
L.
,
2011
, “
Entransy Dissipation Minimization for Optimization of Heat Exchanger Design
,”
Chin. Sci. Bull.
,
56
(
20
), pp.
2174
2178
.
36.
Guo
,
J. F.
,
Cheng
,
L.
, and
Xu
,
M. T.
,
2009
, “
Entransy Dissipation Number and Its Application to Heat Exchanger Performance Evaluation
,”
Chin. Sci. Bull.
,
54
(
15
), pp.
2708
2713
.
37.
Guo
,
Z. Y.
,
Liu
,
X. B.
,
Tao
,
W. Q.
, and
Shah
,
R. K.
,
2010
, “
Effectiveness-Thermal Resistance Method for Heat Exchanger Design and Analysis
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2877
2884
.
38.
Chen
,
Q.
,
2013
, “
Entransy Dissipation-Based Thermal Resistance Method for Heat Exchanger Performance Design and Optimization
,”
Int. J. Heat Mass Transfer
,
60
, pp.
156
162
.
39.
Cheng
,
X.
,
Wang
,
X.
, and
Liang
,
X.
,
2020
, “
Role of Viscous Heating in Entransy Analyses of Convective Heat Transfer
,”
Sci. China Technol. Sci.
,
63
, pp.
2154
2162
.
40.
Prasad
,
R. C.
,
1987
, “
Analytical Solution for a Double-Pipe Heat Exchanger With Non-adiabatic Condition at the Outer Surface
,”
Int. Commun. Heat Mass Transfer
,
14
(
6
), pp.
665
672
.
41.
Jin
,
P.
, and
Hrnjak
,
P.
,
2017
, “
Effect of End Plates on Heat Transfer of Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
108
(
2
), pp.
740
748
.
42.
Jin
,
P.
, and
Hrnjak
,
P.
,
2021
, “
Compensating for the End-Plate Effect on Heat Transfer in Brazed Plate Heat Exchangers
,”
Int. J. Refrig.
,
126
, pp.
99
108
.
43.
Seider
,
W. D.
,
Lewin
,
D. R.
,
Seader
,
J. D.
,
Widagdo
,
S.
,
Gani
,
R.
, and
Ng
,
K. M.
,
2016
,
Product and Process Design Principles: Synthesis, Analysis and Evaluation
, 4th ed.,
John Wiley & Sons
,
New York
.
44.
Jenkins
,
S.
,
2021
, “
2020 Annual CEPCI Average Value
,”
Chem. Eng.
, https://www.chemengonline.com/2020-annual-cepci-average-value/
45.
Sabouri Shirazi
,
A. H.
,
Ghodrat
,
M.
, and
Behnia
,
M.
,
2021
, “
Energy and Exergy Analysis of Spiral Turns in Optimum Design Spiral Plate Heat Exchangers
,”
Heat Transfer
,
51
(
1
), pp.
701
732
.
46.
Shah
,
R. K.
, and
Sekulic
,
D. K.
,
2003
,
Fundamentals of Heat Exchanger Design
, 1st ed.,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.