Abstract

Semi-transparent photovoltaic thermal (SPVT) greenhouse system combined with an earth air heat exchanger (EAHE) has been developed to make the system sustainable. The system is designed to cultivate plants in a hot climatic condition, where green net is provided, which bifurcates the enclosed space of the greenhouse into zone-1 and zone-2, and this green net cut the solar radiation incident on the plants. The influence of air changes in zone-1, mass flowrate of air flowing through EAHE, and packing factor on photovoltaic (PV) cell, air of the greenhouse, and the plant temperatures is investigated for a typical harsh summer day by using periodic model of these parameters. Furthermore, for a holistic performance assessment of this SPVT greenhouse, exergy, thermal load leveling, and decrement factor are evaluated. Results indicate that the optimum temperature range for plant growth (30 °C–37 °C) within the greenhouse can be achieved through a combination of ventilation in zone-1 and integration of EAHE. The temperature of plants reduced by 9 °C for 30 air changes in zone-1, and the temperature reduces further by 24 °C when EAHE having a flowrate of 0.5 kg/s is operated. The SPVT greenhouse system also generates 128 kWh of daily overall exergy that makes the system sustainable.

References

1.
Aljubury
,
I. M. A.
, and
Ridha
,
H. D. A.
,
2017
, “
Enhancement of Evaporative Cooling System in a Greenhouse Using Geothermal Energy
,”
Renewable Energy
,
111
, pp.
321
331
.
2.
Ilić
,
Z. S.
,
Milenković
,
L.
,
Stanojević
,
L.
,
Cvetković
,
D.
, and
Fallik
,
E.
,
2012
, “
Effects of the Modification of Light Intensity by Color Shade Nets on Yield and Quality of Tomato Fruits
,”
Sci. Hortic.
,
139
, pp.
90
95
.
3.
Murakami
,
K.
,
Fukuoka
,
N.
, and
Noto
,
S.
,
2017
, “
Improvement of Greenhouse Microenvironment and Sweetness of Melon (Cucumis Melo L.) Fruits by Greenhouse Shading with a New Kind of Near-Infrared Ray-Cutting Net in Mid-Summer
,”
Sci. Hortic.
,
218
, pp.
1
7
.
4.
Ahemd
,
H. A.
,
Al-Faraj
,
A. A.
, and
Abdel-Ghany
,
A. M.
,
2016
, “
Shading Greenhouses to Improve the Microclimate, Energy and Water Saving in Hot Regions: A Review
,”
Sci. Hortic.
,
201
, pp.
36
45
.
5.
Santamouris
,
M.
,
Argiriou
,
A.
, and
Vallindras
,
M.
,
1994
, “
Design a N D Operation of a Low Energy Consumption Passive Solar
,”
Sol. Energy
,
52
(
5
), pp.
371
378
.
6.
Sodha
,
M. S.
,
Buddhi
,
D.
, and
Sawhney
,
R. L.
,
1991
, “
Thermal Performance of Underground Air Pipe: Different Earth Surface Treatments
,”
Energy Convers. Manage.
,
31
(
1
), pp.
95
104
.
7.
Misra
,
R.
,
Bansal
,
V.
,
Das Agarwal
,
G.
,
Mathur
,
J.
, and
Aseri
,
T.
,
2013
, “
Evaluating Thermal Performance and Energy Conservation Potential of Hybrid Earth Air Tunnel Heat Exchanger in Hot and Dry Climate—In Situ Measurement
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031006
.
8.
Mahach
,
H.
, and
Benhamou
,
B.
,
2020
, “
Extensive Parametric Study of Cooling Performance of an Earth-to-Air Heat Exchanger in Hot Semi-Arid Climate
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031006
.
9.
Díaz-Hernández
,
H. P.
,
Macias-Melo
,
E. V.
,
Aguilar-Castro
,
K. M.
,
Hernández-Pérez
,
I.
,
Xamán
,
J.
,
Serrano-Arellano
,
J.
, and
López-Manrique
,
L. M.
,
2020
, “
Experimental Study of an Earth to Air Heat Exchanger (EAHE) for Warm Humid Climatic Conditions
,”
Geothermics
,
84
, p.
101741
.
10.
Hermes
,
V. F.
,
Ramalho
,
J. V. A.
,
Rocha
,
L. A. O.
,
dos Santos
,
E. D.
,
Marques
,
W. C.
,
Costi
,
J.
,
Rodrigues
,
M. K.
, and
Isoldi
,
L. A.
,
2020
, “
Further Realistic Annual Simulations of Earth-Air Heat Exchangers Installations in a Coastal City
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100603
.
11.
Bisoniya
,
T. S.
,
2015
, “
Design of Earth–Air Heat Exchanger System
,”
Geotherm. Energy
,
3
(
1
), pp.
1
10
.
12.
Bharadwaj
,
S. S.
, and
Bansal
,
N. K.
,
1981
, “
Temperature Distribution Inside Ground for Various Surface Conditions
,”
Build. Environ.
,
16
(
3
), pp.
183
192
.
13.
Le
,
A. T.
,
Wang
,
L.
,
Wang
,
Y.
, and
Li
,
D.
,
2021
, “
Measurement Investigation on the Feasibility of Shallow Geothermal Energy for Heating and Cooling Applied in Agricultural Greenhouses of Shouguang City: Ground Temperature Profiles and Geothermal Potential
,”
Inf. Process. Agric.
,
8
(
2
), pp.
251
269
.
14.
Stanciu
,
D.
,
Stanciu
,
C.
, and
Paraschiv
,
I.
,
2016
, “
Mathematical Links Between Optimum Solar Collector Tilts in Isotropic Sky for Intercepting Maximum Solar Irradiance
,”
J. Atmos. Sol.-Terr. Phys.
,
137
, pp.
58
65
.
15.
Ozgener
,
O.
,
Ozgener
,
L.
, and
Goswami
,
D. Y.
,
2011
, “
Experimental Prediction of Total Thermal Resistance of a Closed Loop EAHE for Greenhouse Cooling System
,”
Int. Commun. Heat Mass Transfer.
,
38
(
6
), pp.
711
716
.
16.
Ozgener
,
O.
,
Ozgener
,
L.
, and
Goswami
,
D. Y.
,
2017
, “
Seven Years Energetic and Exergetic Monitoring for Vertical and Horizontal EAHE Assisted Agricultural Building Heating
,”
Renewable Sustainable Energ. Rev.
,
80
, pp.
175
179
.
17.
Hepbasli
,
A.
,
2013
, “
Low Exergy Modelling and Performance Analysis of Greenhouses Coupled to Closed Earth-to-Air Heat Exchangers (EAHEs)
,”
Energy Build.
,
64
, pp.
224
230
.
18.
Bisoniya
,
T. S.
,
Kumar
,
A.
, and
Baredar
,
P.
,
2013
, “
Experimental and Analytical Studies of Earth-Air Heat Exchanger (EAHE) Systems in India: A Review
,”
Renewable Sustainable Energ. Rev.
,
19
, pp.
238
246
.
19.
Li
,
H.
,
Ni
,
L.
,
Yao
,
Y.
, and
Sun
,
C.
,
2019
, “
Experimental Investigation on the Cooling Performance of an Earth to Air Heat Exchanger (EAHE) Equipped With an Irrigation System to Adjust Soil Moisture
,”
Energy Build.
,
196
, pp.
280
292
.
20.
Li
,
H.
,
Ni
,
L.
,
Liu
,
G.
, and
Yao
,
Y.
,
2019
, “
Performance Evaluation of Earth to Air Heat Exchange (EAHE) Used for Indoor Ventilation During Winter in Severe Cold Regions
,”
Appl. Therm. Eng.
,
160
(
160
), p.
114111
.
21.
Amanowicz
,
Ł
, and
Wojtkowiak
,
J.
,
2018
, “
Validation of CFD Model for Simulation of Multi-Pipe Earth-to-Air Heat Exchangers (EAHEs) Flow Performance
,”
Therm. Sci. Eng. Prog.
,
5
(
5
), pp.
44
49
.
22.
Peretti
,
C.
,
Zarrella
,
A.
,
De Carli
,
M.
, and
Zecchin
,
R.
,
2013
, “
The Design and Environmental Evaluation of Earth-to-Air Heat Exchangers (EAHE). A Literature Review
,”
Renewable Sustainable Energ. Rev.
,
28
, pp.
107
116
.
23.
Li
,
H.
,
Ni
,
L.
,
Yao
,
Y.
, and
Sun
,
C.
,
2020
, “
Annual Performance Experiments of an Earth-Air Heat Exchanger Fresh Air-Handling Unit in Severe Cold Regions: Operation, Economic and Greenhouse Gas Emission Analyses
,”
Renewable Energy
,
146
, pp.
25
37
.
24.
Rosa
,
N.
,
Soares
,
N.
,
Costa
,
J. J.
,
Santos
,
P.
, and
Gervásio
,
H.
,
2020
, “
Assessment of an Earth-Air Heat Exchanger (EAHE) System for Residential Buildings in Warm-Summer Mediterranean Climate
,”
Sustain. Energy Technol. Assess
,
38
, p.
100649
.
25.
Chiesa
,
G.
,
2018
, “
EAHX—Earth-to-Air Heat Exchanger: Simplified Method and KPI for Early Building Design Phases
,”
Build. Environ.
,
144
, pp.
142
158
.
26.
Ghosal
,
M. K.
,
Tiwari
,
G. N.
, and
Srivastava
,
N. S. L.
,
2004
, “
Thermal Modeling of a Greenhouse With an Integrated Earth to Air Heat Exchanger: An Experimental Validation
,”
Energy Build.
,
36
(
3
), pp.
219
227
.
27.
Tiwari
,
G. N.
,
Akhtar
,
M. A.
,
Shukla
,
A.
, and
Emran Khan
,
M.
,
2006
, “
Annual Thermal Performance of Greenhouse With an Earth-Air Heat Exchanger: An Experimental Validation
,”
Renewable Energy
,
31
(
15
), pp.
2432
2446
.
28.
Ghosal
,
M. K.
, and
Tiwari
,
G. N.
,
2006
, “
Modeling and Parametric Studies for Thermal Performance of an Earth to Air Heat Exchanger Integrated With a Greenhouse
,”
Energy Convers. Manag.
,
47
(
13–14
), pp.
1779
1798
.
29.
Mihalakakou
,
G.
,
Santamouris
,
M.
, and
Asimakopoulos
,
D.
,
1994
, “
On the Cooling Potential of Earth to Air Heat Exchangers
,”
Energy Convers. Manag.
,
35
(
5
), pp.
395
402
.
30.
Wu
,
H.
,
Wang
,
S.
, and
Zhu
,
D.
,
2007
, “
Modelling and Evaluation of Cooling Capacity of Earth-Air-Pipe Systems
,”
Energy Convers. Manag.
,
48
(
5
), pp.
1462
1471
.
31.
Yadav
,
S.
,
Panda
,
S. K.
,
Hachem-Vermette
,
C.
, and
Tiwari
,
G. N.
,
2020
, “
Exergetic Performance Assessment of Optimally Inclined BIPV Thermal System by Considering Cyclic Nature of Insolation
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031003
.
32.
Nayak
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Energy and Exergy Analysis of Photovoltaic/Thermal Integrated With a Solar Greenhouse
,”
Energy Build.
,
40
(
11
), pp.
2015
2021
.
33.
Nayak
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Theoretical Performance Assessment of an Integrated Photovoltaic and Earth Air Heat Exchanger Greenhouse Using Energy and Exergy Analysis Methods
,”
Energy Build.
,
41
(
8
), pp.
888
896
.
34.
Al-Ajmi
,
F.
,
Loveday
,
D. L.
, and
Hanby
,
V. I.
,
2006
, “
The Cooling Potential of Earth-Air Heat Exchangers for Domestic Buildings in a Desert Climate
,”
Build. Environ.
,
41
(
3
), pp.
235
244
.
35.
Li
,
Z. X.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A. A. A.
,
Kalbasi
,
R.
,
Afrand
,
M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Multi-Objective Energy and Exergy Optimization of Different Configurations of Hybrid Earth-Air Heat Exchanger and Building Integrated Photovoltaic/Thermal System
,”
Energy Convers. Manag.
,
195
, pp.
1098
1110
.
36.
Gupta
,
R.
, and
Tiwari
,
G. N.
,
2005
, “
Modeling of Energy Distribution Inside Greenhouse Using Concept of Solar Fraction With and Without Reflecting Surface on North Wall
,”
Build. Environ.
,
40
(
1
), pp.
63
71
.
37.
Tiwari
,
G. N.
,
2003
,
Greenhouse Technology for Controlled Environment
,
Alpha Science International Ltd.
,
Oxford, UK
.
38.
Tiwari
,
G. N.
, and
Tiwari
,
A.
,
2016
,
Handbook of Solar Energy
,
Springer
,
New York
.
39.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
40.
Deo
,
A.
,
Mishra
,
G. K.
, and
Tiwari
,
G. N.
,
2017
, “
A Thermal Periodic Theory and Experimental Validation of Building Integrated Semi-Transparent Photovoltaic Thermal (BiSPVT) System
,”
Sol. Energy
,
155
, pp.
1021
1032
.
You do not currently have access to this content.