Abstract

A comprehensive exergy, exergo-economic, and sustainability assessment of seven conventional to hybrid air-conditioning systems comprising direct and indirect evaporative coolers with direct expansion system and their several combinations integrated into an eight-story domestic building for five different cities corresponding to arid, semi-arid, humid subtropical, tropical wet and dry, and tropical wet climatic zones across India are investigated based on simulation output from energyplus. The exergetic performances are reported for varying dead state temperatures ranging from 5 °C to 40 °C, while the saturated humidity ratio and pressure at system outlet are two other dead state properties. The results reveal that the specific exergy of moist air and exergetic efficiency decreases with increasing dead state temperature and becomes least at a dead state temperature near American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) comfort temperature of 23 °C. In arid, semi-arid, and humid subtropical climates, the three-stage evaporative cooling system exhibits the lowest exergy destruction of 100 J/kg1 and the highest exergy efficiency of 90% at a dead state temperature of 40 °C. The two-stage direct evaporative-direct expansion cooling system exhibits superior exergy efficiency in tropical wet and dry and tropical wet zones. Furthermore, the Grassmann diagram based on the climate of Hyderabad indicates that the three-stage cooling system is energetically and exergetically optimum with exergy destruction of 28.86%.

References

1.
McNeil
,
M. A.
, and
Letschert
,
V. E.
,
2008
,
Future Air Conditioning Energy Consumption in Developing Countries and What Can Be Done About It: The Potential of Efficiency in the Residential Sector
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
2.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
,
Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications.
,
Elsevier
,
Amsterdam, Netherlands
.
3.
Duan
,
Z.
,
Zhan
,
C.
,
Zhang
,
X.
,
Mustafa
,
M.
,
Zhao
,
X.
,
Alimohammadisagvand
,
B.
, and
Hasan
,
A.
,
2012
, “
Indirect Evaporative Cooling: Past, Present and Future Potentials
,”
Renewable Sustainable Energy Rev.
,
16
(
9
), pp.
6823
6850
.
4.
Mujahid Rafique
,
M.
,
Gandhidasan
,
M.
,
Rehman
,
P.
,
Al-Hadhrami
,
S.
, and
M
,
L.
,
2015
, “
A Review on Desiccant Based Evaporative Cooling Systems
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
145
159
.
5.
Xuan
,
Y. M.
,
Xiao
,
F.
,
Niu
,
X. F.
,
Huang
,
X.
, and
Wang
,
S. W.
,
2012
, “
Research and Application of Evaporative Cooling in China: A Review (I)—Research
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3535
3546
.
6.
Riangvilaikul
,
B.
, and
Kumar
,
S.
,
2010
, “
An Experimental Study of a Novel Dew Point Evaporative Cooling System
,”
Energy Build.
,
42
(
5
), pp.
637
644
.
7.
Heidarinejad
,
G.
,
Bozorgmehr
,
M.
,
Delfani
,
S.
, and
Esmaeelian
,
J.
,
2009
, “
Experimental Investigation of Two-Stage Indirect/Direct Evaporative Cooling System in Various Climatic Conditions
,”
Build. Environ.
,
44
(
10
), pp.
2073
2079
.
8.
Chauhan
,
S. S.
, and
Rajput
,
S. P. S.
,
2017
, “
Experimental Analysis of an Evaporative–Vapour Compression Based Combined Air Conditioning System for Required Comfort Conditions
,”
Appl. Therm. Eng.
,
115
, pp.
326
336
.
9.
Mazzei
,
P.
, and
Palombo
,
A.
,
1999
, “
Economic Evaluation of Hybrid Evaporative Technology Implementation in Italy
,”
Build. Environ.
,
34
(
5
), pp.
571
582
.
10.
Al-Juwayhel
,
F.
,
El-Dessouky
,
H.
,
Ettouney
,
H.
, and
Al-Qattan
,
M.
,
2004
, “
Experimental Evaluation of One, Two, and Three Stage Evaporative Cooling Systems
,”
Heat Transfer Eng.
,
25
(
6
), pp.
72
86
.
11.
Jain
,
V.
,
Mullick
,
S. C.
, and
Kandpal
,
T. C.
,
2013
, “
A Financial Feasibility Evaluation of Using Evaporative Cooling With Air-Conditioning (in Hybrid Mode) in Commercial Buildings in India
,”
Energy Sustainable Dev.
,
17
(
1
), pp.
47
53
.
12.
Delfani
,
S.
,
Esmaeelian
,
J.
,
Pasdarshahri
,
H.
, and
Karami
,
M.
,
2010
, “
Energy Saving Potential of an Indirect Evaporative Cooler as a Pre-Cooling Unit for Mechanical Cooling Systems in Iran
,”
Energy Build.
,
42
(
11
), pp.
2169
2176
.
13.
Santos
,
J. C.
,
Barros
,
G. D. T.
,
Gurgel
,
J. M.
, and
Marcondes
,
F.
,
2013
, “
Energy and Exergy Analysis Applied to the Evaporative Cooling Process in Air Washers
,”
Int. J. Refrig.
,
36
(
3
), pp.
1154
1161
.
14.
Nada
,
S. A.
,
Fouda
,
A.
,
Mahmoud
,
M. A.
, and
Elattar
,
H. F.
,
2019
, “
Experimental Investigation of Energy and Exergy Performance of a Direct Evaporative Cooler Using a New Pad Type
,”
Energy Build.
,
203
, p.
109449
.
15.
Ndukwu
,
M. C.
,
Abam
,
F. I.
,
Manuwa
,
S. I.
, and
Briggs
,
T. A.
,
2017
, “
Exergetic Performance Indicators of a Direct Evaporative Cooling System With Different Evaporative Cooling Pads
,”
Int. J. Ambient Energy
,
38
(
7
), pp.
701
709
.
16.
Chengqin
,
R.
,
Nianping
,
L.
, and
Guangfa
,
T.
,
2002
, “
Principles of Exergy Analysis in HVAC and Evaluation of Evaporative Cooling Schemes
,”
Build. Environ.
,
37
(
11
), pp.
1045
1055
.
17.
Ratlamwala
,
T. A. H.
, and
Dincer
,
I.
,
2013
, “
Efficiency Assessment of Key Psychometric Processes
,”
Int. J. Refrig.
,
36
(
3
), pp.
1142
1153
.
18.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2003
, “
Application of Exergy Analysis to Various Psychrometric Processes
,”
Int. J. Energy Res.
,
27
(
12
), pp.
1079
1094
.
19.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2011
, “
Exergetic and Sustainability Performance Comparison of Novel and Conventional Air Cooling Systems for Building Applications
,”
Energy Build.
,
43
(
6
), pp.
1461
1472
.
20.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Exergoeconomic, Enviroeconomic and Sustainability Analyses of a Novel Air Cooler
,”
Energy Build.
,
55
, pp.
747
756
.
21.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
A Comparative Study on Energetic, Exergetic and Environmental Performance Assessments of Novel M-Cycle Based Air Coolers for Buildings
,”
Energy Convers. Manag.
,
56
, pp.
69
79
.
22.
Sadighi Dizaji
,
H.
,
Hu
,
E. J.
,
Chen
,
L.
, and
Pourhedayat
,
S.
,
2019
, “
Comprehensive Exergetic Study of Regenerative Maisotsenko Air Cooler; Formulation and Sensitivity Analysis
,”
Appl. Therm. Eng.
,
152
, pp.
455
467
.
23.
Lin
,
J.
,
Bui
,
D. T.
,
Wang
,
R.
, and
Chua
,
K. J.
,
2018
, “
On the Exergy Analysis of the Counter-Flow Dew Point Evaporative Cooler
,”
Energy
,
165
, pp.
958
971
.
24.
Hoseinzadeh
,
S.
, and
Stephan Heyns
,
P.
,
2021
, “
Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082106
.
25.
Hoseinzadeh
,
S.
,
Yargholi
,
R.
,
Kariman
,
H.
, and
Heyns
,
P. S.
,
2020
, “
Exergoeconomic Analysis and Optimization of Reverse Osmosis Desalination Integrated With Geothermal Energy
,”
Environ. Prog. Sustainable Energy
,
39
(
5
), p.
13405
.
26.
Kariman
,
H.
,
Hoseinzadeh
,
S.
, and
Heyns
,
P. S.
,
2019
, “
Energetic and Exergetic Analysis of Evaporation Desalination System Integrated With Mechanical Vapor Recompression Circulation
,”
Case Stud. Therm. Eng.
,
16
, p.
100548
.
27.
Wepfer
,
W. J.
,
1979
, “
Proper Evaluation of Available Energy for HVAC
,”
ASHRAE Trans.
,
85
(
1
), pp.
214
230
.
28.
Martínez
,
P.
,
Ruiz
,
J.
,
Martínez
,
P. J.
,
Kaiser
,
A. S.
, and
Lucas
,
M.
,
2018
, “
Experimental Study of the Energy and Exergy Performance of a Plastic Mesh Evaporative Pad Used in Air Conditioning Applications
,”
Appl. Therm. Eng.
,
138
, pp.
675
685
.
29.
Ghazikhani
,
M.
,
Khazaee
,
I.
, and
Vahidifar
,
S.
,
2016
, “
Exergy Analysis of Two Humidification Process Methods in Air-Conditioning Systems
,”
Energy Build.
,
124
, pp.
129
140
.
30.
Zhang
,
L.
,
Zha
,
X.
,
Song
,
X.
, and
Zhang
,
X.
,
2019
, “
Optimization Analysis of a Hybrid Fresh Air Handling System Based on Evaporative Cooling and Condensation Dehumidification
,”
Energy Convers. Manag.
,
180
, pp.
83
93
.
31.
Caliskan
,
H.
,
Hepbasli
,
A.
,
Dincer
,
I.
, and
Maisotsenko
,
V.
,
2011
, “
Thermodynamic Performance Assessment of a Novel Air Cooling Cycle: Maisotsenko Cycle
,”
Int. J. Refrig.
,
34
(
4
), pp.
980
990
.
32.
Farmahini-Farahani
,
M.
,
Delfani
,
S.
, and
Esmaeelian
,
J.
,
2012
, “
Exergy Analysis of Evaporative Cooling to Select the Optimum System in Diverse Climates
,”
Energy
,
40
(
1
), pp.
250
257
.
33.
Venkateswara Rao
,
V.
, and
Datta
,
S. P.
,
2020
, “
A Feasibility Assessment of Single to Multi/Hybrid Evaporative Coolers for Building Air-Conditioning Across Diverse Climates in India
,”
Appl. Therm. Eng.
,
168
, p.
114813
.
34.
Rao
,
V. V.
, and
Datta
,
S. P.
,
2021
, “
Comprehensive Exergetic, Sustainability and Enviro-Economic Evaluation of Single-Stage and Hybrid Evaporative Coolers in India
,”
Sustainable Energy Technol. Assess.
,
47
, p.
101403
.
35.
DesignBuilder 4.7
,
2014
,
Building Modelling Software
.
36.
EnergyPlus 8.3, U.S. Department of Energy
,
2016
,
Building Simulation Program
.
37.
Zhang
,
R.
, and
Hong
,
T.
,
2017
, “
Modeling of HVAC Operational Faults in Building Performance Simulation
,”
Appl. Energy
,
202
, pp.
178
188
.
38.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
,
Witte
,
M. J.
, and
Glazer
,
J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
.
39.
Kamel
,
E.
, and
Memari
,
A. M.
,
2019
, “
Review of BIM’s Application in Energy Simulation: Tools, Issues, and Solutions
,”
Autom. Constr.
,
97
, pp.
164
180
.
40.
Hoseinzadeh
,
S.
,
2019
, “
Thermal Performance of Electrochromic Smart Window With Nanocomposite Structure Under Different Climates in Iran
,”
Micro Nanosyst.
,
11
(
2
), pp.
154
164
.
41.
Hoseinzadeh
,
S.
,
Hadi Zakeri
,
M.
,
Shirkhani
,
A.
, and
Chamkha
,
A. J.
,
2019
, “
Analysis of Energy Consumption Improvements of a Zero-Energy Building in a Humid Mountainous Area
,”
J. Renewable Sustainable Energy
,
11
(
1
), p.
015103
.
42.
Hasani Balyani
,
H.
,
Sohani
,
A.
,
Sayyaadi
,
H.
, and
Karami
,
R.
,
2015
, “
Acquiring the Best Cooling Strategy Based on Thermal Comfort and 3E Analyses for Small Scale Residential Buildings at Diverse Climatic Conditions
,”
Int. J. Refrig.
,
57
, pp.
112
137
.
43.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
Wiley Online Library
,
Hoboken, NJ
.
You do not currently have access to this content.