Abstract

This paper presents computer simulation of heat transfer in alumina and cement rotary kilns. The model incorporates radiation exchange among solids, wall, and gas, convective heat transfer from the gas to the wall and the solids, contact heat transfer between the covered wall and solids, and heat loss to the surrounding as well as chemical reactions. The mass and energy balances of gas and solids have been performed in each axial segment of the kilns. The energy equation for the wall is solved numerically by the finite-difference method. The dust entrainment in the gas is also accounted for. The solution marches from the solids inlet to the solids outlet. The kiln length predicted by the present model of the alumina kiln is 77.5 m as compared to 80 m of the actual kiln of Manitius et al. (1974, “Mathematical Model of an Aluminum Oxide Rotary Kiln,” Ind. Eng. Chem. Process Des. Dev., 13(2), pp. 132–142). In the second part, heat transfer in a dry process cement rotary kiln is modeled. The melting of the solids and coating formation on the inner wall of the kiln are also taken into account. A detailed parametric study lent a good physical insight into axial solids and gas temperature distributions, and axial variation of chemical composition of the products in both the kilns.

References

1.
Manitius
,
A.
,
Kurcyusz
,
E.
, and
Kawecki
,
W.
,
1974
, “
Mathematical Model of the Aluminum Oxide Rotary Kiln
,”
Ind. Eng. Chem. Process Des. Dev.
,
13
(
2
), pp.
132
142
.
2.
Lyons
,
J. W.
,
Min
,
H. S.
,
Parisot
,
P. E.
, and
Paul
,
J. F.
,
1962
, “
Experimentation With a Wet-Process Rotary Cement Kiln Via the Analog Computer
,”
Ind. Eng. Chem. Process Des. Dev.
,
1
(
1
), pp.
29
33
.
3.
Spang
H. A.
, III
,
1972
, “
A Dynamic Model of a Cement Kiln
,”
Automatica
,
8
(
3
), pp.
309
323
.
4.
Guruz
,
H. K.
, and
Bac
,
N.
,
1981
, “
Mathematical Modelling of Rotary Cement Kilns by the Zone Method
,”
Can. J. Chem. Eng.
,
59
(
4
), pp.
540
548
.
5.
Mastorakos
,
E.
,
Massias
,
A.
,
Tsakiroglou
,
C. D.
,
Goussis
,
D. A.
,
Burganos
,
V. N.
, and
Payatakes
,
A. C.
,
1999
, “
CFD Predictions for Cement Kilns Including Flame Modelling, Heat Transfer and Clinker Chemistry
,”
Appl. Math. Model.
,
23
(
1
), pp.
55
76
.
6.
Mujumdar
,
K. S.
, and
Ranade
,
V. V.
,
2006
, “
Simulation of Rotary Cement Kilns Using a One-Dimensional Model
,”
Chem. Eng. Res. Des.
,
84
(
3
), pp.
165
177
.
7.
Mujumdar
,
K. S.
,
Arora
,
A.
, and
Ranade
,
V. V.
,
2006
, “
Modeling of Rotary Cement Kilns: Applications to Reduction in Energy Consumption
,”
Ind. Eng. Chem. Res.
,
45
(
7
), pp.
2315
2330
.
8.
Tscheng
,
S. H.
, and
Watkinson
,
A. P.
,
1979
, “
Convective Heat Transfer in a Rotary Kiln
,”
Can. J. Chem. Eng.
,
57
(
4
), pp.
433
443
.
9.
Mintus
,
F.
,
Hamel
,
S.
, and
Krumm
,
W.
,
2006
, “
Wet Process Rotary Cement Kilns: Modeling and Simulation
,”
Clean Technol. Environ. Policy
,
8
(
2
), pp.
112
122
.
10.
Sadighi
,
S.
,
Shirvani
,
M.
, and
Ahmad
,
A.
,
2011
, “
Rotary Cement Kiln Coating Estimator: Integrated Modelling of Kiln With Shell Temperature Measurement
,”
Can. J. Chem. Eng.
,
89
(
1
), pp.
116
125
.
11.
Mikulčić
,
H.
,
Von Berg
,
E.
,
Vujanović
,
M.
,
Priesching
,
P.
,
Perković
,
L.
,
Tatschl
,
R.
, and
Duić
,
N.
,
2012
, “
Numerical Modelling of Calcination Reaction Mechanism for Cement Production
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
607
615
.
12.
Csernyei
,
C.
, and
Straatman
,
A. G.
,
2016
, “
Numerical Modeling of a Rotary Cement Kiln With Improvements to Shell Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
610
621
.
13.
Wirtz
,
S.
,
Pieper
,
C.
,
Buss
,
F.
,
Schiemann
,
M.
,
Schaefer
,
S.
, and
Scherer
,
V.
,
2020
, “
Impact of Coating Layers in Rotary Cement Kilns: Numerical Investigation With a Blocked-Off Region Approach for Radiation and Momentum
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100429
.
14.
Dumont
,
G.
, and
Bélanger
,
P. R.
,
1978
, “
Steady-State Study of a Titanium Dioxide Rotary Kiln
,”
Ind. Eng. Chem. Process Des. Dev.
,
17
(
2
), pp.
107
114
.
15.
Watkinson
,
A. P.
, and
Brimacombe
,
J. K.
,
1982
, “
Limestone Calcination in a Rotary Kiln
,”
Metall. Trans. B
,
13
(
3
), pp.
369
378
.
16.
Watkinson
,
A. P.
, and
Brimacombe
,
J. K.
,
1983
, “
Oxygen Enrichment in Rotary Lime Kilns
,”
Can. J. Chem. Eng.
,
61
(
6
), pp.
842
849
.
17.
Ghoshdastidar
,
P. S.
,
Rhodes
,
C. A.
, and
Orloff
,
D. I.
,
1985
, “
Heat Transfer in a Rotary Kiln During Incineration of Solid Waste
,”
23rd ASME National Heat Transfer Conference
,
Denver, CO
,
Aug. 4–7
, ASME Paper No. 85-HT-86.
18.
Kim
,
N. K.
,
Srivastava
,
R.
, and
Lyon
,
J.
,
1988
, “
Simulation of an Industrial Rotary Calciner With Trona Ore Decomposition
,”
Ind. Eng. Chem. Res.
,
27
(
7
), pp.
1194
1198
.
19.
Barr
,
P. V.
,
Brimacombe
,
J. K.
, and
Watkinson
,
A. P.
,
1989
, “
A Heat-Transfer Model for the Rotary Kiln: Part I. Pilot Kiln Trials
,”
Metall. Mater. Trans. B
,
20
(
3
), pp.
391
402
.
20.
Barr
,
P. V.
,
Brimacombe
,
J. K.
, and
Watkinson
,
A. P.
,
1989
, “
A Heat-Transfer Model for the Rotary Kiln: Part II. Development of the Cross-Section Model
,”
Metall. Mater. Trans. B
,
20
(
3
), pp.
403
419
.
21.
Bui
,
R.-T.
,
Simard
,
G.
,
Charette
,
A.
,
Kocaefe
,
Y.
, and
Perron
,
J.
,
1995
, “
Mathematical Modeling of the Rotary Coke Calcining Kiln
,”
Can. J. Chem. Eng.
,
73
(
4
), pp.
534
545
.
22.
Lee
,
M.
, and
Lee
,
S.
,
1999
, “
A Mathematical Model of Calcination of Limestone in Rotary Kiln
,”
Steel Res.
,
70
(
1
), pp.
15
21
.
23.
Martins
,
M. A.
,
Oliveira
,
L. S.
, and
Franca
,
A. S.
,
2001
, “
Modeling and Simulation of Petroleum Coke Calcination in Rotary Kilns
,”
Fuel
,
80
(
11
), pp.
1611
1622
.
24.
Georgallis
,
M.
,
Nowak
,
P.
,
Salcudean
,
M.
, and
Gartshore
,
I. S.
,
2005
, “
Modelling the Rotary Lime Kiln
,”
Can. J. Chem. Eng.
,
83
(
2
), pp.
212
223
.
25.
Ginsberg
,
T.
, and
Modigell
,
M.
,
2011
, “
Dynamic Modelling of a Rotary Kiln for Calcination of Titanium Dioxide White Pigment
,”
Comput. Chem. Eng.
,
35
(
11
), pp.
2437
2446
.
26.
Herz
,
F.
,
Specht
,
E.
, and
Abdelwahab
,
A.
,
2017
, “
Modeling and Validation of the Siderite Decomposition in a Rotary Kiln
,”
Energy Procedia
,
120
, pp.
524
531
.
27.
Kim
,
N. K.
,
Lyon
,
J. E.
, and
Suryanarayana
,
N. V.
,
1986
, “
Heat Shield for High-Temperature Kiln
,”
Ind. Eng. Chem. Process Des. Dev.
,
25
(
4
), pp.
843
849
.
28.
Holman
,
J. P.
,
1997
,
Heat Transfer
, 6th ed.,
McGraw-Hill
,
New York
.
29.
Jacob
,
M.
,
1957
,
Heat Transfer
, Vol.
II
,
John Wiley and Sons, Inc.
,
New York
.
30.
Sleicher
,
C.
, and
Rouse
,
M. W.
,
1975
, “
A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
677
683
.
31.
Li
,
K. W.
,
1974
, “
Application of Khodorov’s and Li’s Entrainment Equations to Rotary Coke Calciners
,”
AIChE J.
,
20
(
5
), pp.
1017
1020
.
32.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
33.
Ghoshdastidar
,
P. S.
,
2017
,
Computational Fluid Dynamics and Heat Transfer
,
Cengage Learning India Pvt. Ltd.
,
New Delhi
.
You do not currently have access to this content.