Abstract

Waste heat recovery is a promising method to reduce fuel consumption and CO2 emissions in heavy-duty vehicles. An organic Rankine cycle (ORC) is used to convert the thermal energy of the exhaust gases into useable energy to support the power train. A key component of the ORC is the expansion machine where the conversion of thermal into mechanical energy takes place. In the case of volumetric expansion machines such as axial piston expanders, lubrication oil is mixed in with the working fluid to reduce friction and increase the component durability. However, the presence of oil also affects both the efficiency and the fluid dynamical behavior inside the expander. To implement a one-dimensional simulation model that considers the oil influence, a continuous flow approach is selected. Particular attention is dedicated to the inlet and outlet valve modeling, as these have to account for two-phase flow and multicomponent fluid mixtures. A valve model is built up in the simulation environment dymola based on the homogeneous nonequilibrium (HNE) approach. A virtual one-cylinder test bench is set up to calibrate and validate the model. The simulation results show good correspondence with the measurement data.

References

1.
Edenhofer
,
O.
,
Pichs-Madruga
,
R.
,
Kadner
,
S.
,
Seyboth
,
K.
,
Adler
,
A.
,
Baum
,
I.
,
Brunner
,
S.
,
Eickemeier
,
P.
,
Kriemann
,
B.
,
Savolainen
,
J.
,
Schlömer
,
S.
,
von Stechov
,
C.
,
Zwickel
,
T.
, and
Minx
,
J. C.
,
2014
,
Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK and New York
.
2.
European Commission
,
2017
, “EU Transport in Figures,”
Statistical Pocketbook 2017
,
Publications Office of the European Union
,
Luxembourg
. 10.2832/041248 MI-AA-16-002-EN-N
3.
European Commission
,
2018
, “
Proposal for a Regulation of the European Parliament and of the Council Setting CO2 Emission Performance Standards for New Heavy-Duty Vehicles: 2018/0143 (COD)
.”
4.
Gnamm
,
J.
, and
Lundgren
,
J.
,
2016
, “What Matters Most in Europe’s Truck Market,”
www.bain.com/insights/what-matters-most-in-europes-truck-market
,
Bain & Company
, www.bain.com/insights/what-matters-most-ineuropes-truck-market, Accessed Dec 15, 2019.
5.
Mohamed-Kassim
,
Z.
, and
Filippone
,
A.
,
2010
, “
Fuel Savings on a Heavy Vehicle Via Aerodynamic Drag Reduction
,”
Trans. Res. Part D: Trans. Environ.
,
15
(
5
), pp.
275
284
. 10.1016/j.trd.2010.02.010
6.
Eriksson
,
L.
,
Thomasson
,
A.
,
Ekberg
,
K.
,
Reig
,
A.
,
Eifert
,
M.
,
Donatantonio
,
F.
,
D’Amato
,
A.
,
Arsie
,
I.
,
Pianese
,
C.
,
Otta
,
P.
,
Held
,
M.
,
Vögele
,
U.
, and
Endisch
,
C.
,
2019
, “
Look-Ahead Controls of Heavy Duty Trucks on Open Roads—Six Benchmark Solutions
,”
Control. Eng. Pract.
,
83
(
2
), pp.
45
66
. 10.1016/j.conengprac.2018.10.014
7.
Kock
,
P.
, and
Ordys
,
A. W.
,
2010
, “
Switched Model Predictive Controller for Cruise Control of Heavy Trucks With Heuristic Trajectory Planning
,”
IFAC Proc. Vol.
,
43
(
7
), pp.
37
42
. 10.3182/20100712-3-DE-2013.00090
8.
Andersson
,
C.
,
2004
, “
On Auxiliary Systems in Commercial Vehicles
,” Dissertation,
Lund University
,
Lund, Sweden
.
9.
Tormos
,
B.
,
Ramírez
,
L.
,
Johansson
,
J.
,
Björling
,
M.
, and
Larsson
,
R.
,
2017
, “
Fuel Consumption and Friction Benefits of Low Viscosity Engine Oils for Heavy Duty Applications
,”
Tribol. Int.
,
110
(
6
), pp.
23
34
. 10.1016/j.triboint.2017.02.007
10.
Härtl
,
M.
,
Seidenspinner
,
P.
,
Jacob
,
E.
, and
Wachtmeister
,
G.
,
2015
, “
Oxygenate Screening on a Heavy-Duty Diesel Engine and Emission Characteristics of Highly Oxygenated Oxymethylene Ether Fuel OME1
,”
Fuel
,
153
(
15
), pp.
328
335
. 10.1016/j.fuel.2015.03.012
11.
Burger
,
J.
,
Hasse
,
H.
,
Härtl
,
M.
,
Wachtmeister
,
G.
,
Arnold
,
U.
, and
Sauer
,
J.
,
2016
, “
Oxymethylene Dimethyl Ethers (OMEs): Alternative Diesel Fuels for Low-Emission Combustion
,”
Chem. Ing. Tech.
,
88
(
9
), p.
1259
. 10.1002/cite.201650368
12.
Härtl
,
M.
,
2015
, “
Emissionsreduktion Bei Dieselmotoren Durch Den Einsatz Sauerstoffhaltiger Kraftstoffe
,” Dissertation,
Technische Universität München
,
München, Germany
.
13.
Bernath
,
M.
,
Swoboda
,
J.
,
Karl
,
C.
,
Sterzenbach
,
M.
, and
Wachtmeister
,
G.
,
2012
, “Energetische Analyse Im Schweren Nutzfahrzeug Im Hinblick Auf Thermische Rekuperationsmaßnahmen,”
Wärmemanagement Des Kraftfahrzeugs VIII
,
Steinberg
,
P.
, ed.,
Haus der Technik Expert-Verlag
,
Renningen
, pp.
35
57
.
14.
Heber
,
L.
,
Schwab
,
J.
, and
Friedrich
,
H. E.
,
2018
, “Design of a Thermoelectric Generator for Heavy-Duty Vehicles: Approach Based on WHVC and Real Driving Vehicle Boundary Conditions,”
Proceedings of the International Conference of Energy and Thermal Management, Air Conditioning, Waste Heat Recovery
,
C.
Junior
, and
O.
Dingel
, eds.,
Springer
,
Berlin
, pp.
206
221
.
15.
Weerasinghe
,
W.
,
Stobart
,
R. K.
, and
Hounsham
,
S. M.
,
2010
, “
Thermal Efficiency Improvement in High Output Diesel Engines a Comparison of a Rankine Cycle With Turbo-compounding
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2253
2256
. 10.1016/j.applthermaleng.2010.04.028
16.
Amicabile
,
S.
,
Lee
,
J.-I.
, and
Kum
,
D.
,
2015
, “
A Comprehensive Design Methodology of Organic Rankine Cycles for the Waste Heat Recovery of Automotive Heavy-Duty Diesel Engines
,”
Appl. Therm. Eng.
,
87
(
14
), pp.
574
585
. 10.1016/j.applthermaleng.2015.04.034
17.
Koppauer
,
H.
,
Kemmetmüller
,
W.
, and
Kugi
,
A.
,
2017
, “
Modeling and Optimal Steady-State Operating Points of an ORC Waste Heat Recovery System for Diesel Engines
,”
Appl. Energy.
,
206
(
25
), pp.
329
345
. 10.1016/j.apenergy.2017.08.151
18.
Cipollone
,
R.
,
Di Battista
,
D.
,
Perosino
,
A.
, and
Bettoja
,
F.
,
2016
, “
Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles
,”
SAE 2016 World Congress and Exhibition
. 10.4271/2016-01-0234
19.
Zahoransky
,
R.
,
Allelein
,
H.-J.
,
Bollin
,
E.
,
Oehler
,
H.
, and
Schelling
,
U.
,
2010
,
Energietechnik: Systeme Zur Energieumwandlung
, 5th ed.,
Vieweg+Teubner Verlag
,
Wiesbaden
.
20.
Chintala
,
V.
,
Kumar
,
S.
, and
Pandey
,
J. K.
,
2018
, “
A Technical Review on Waste Heat Recovery From Compression Ignition Engines Using Organic Rankine Cycle
,”
Renewable. Sustainable. Energy. Rev.
,
81
(
1
), pp.
493
509
. 10.1016/j.rser.2017.08.016
21.
Shi
,
L.
,
Shu
,
G.
,
Tian
,
H.
, and
Deng
,
S.
,
2018
, “
A Review of Modified Organic Rankine Cycles (ORCs) for Internal Combustion Engine Waste Heat Recovery (ICE-WHR)
,”
Renewable. Sustainable. Energy. Rev.
,
92
(
15
), pp.
95
110
. 10.1016/j.rser.2018.04.023
22.
Lion
,
S.
,
Michos
,
C. N.
,
Vlaskos
,
I.
,
Rouaud
,
C.
, and
Taccani
,
R.
,
2017
, “
A Review of Waste Heat Recovery and Organic Rankine Cycles (ORC) in On-Off Highway Vehicle Heavy Duty Diesel Engine Applications
,”
Renewable. Sustainable. Energy. Rev.
,
79
(
14
), pp.
691
708
. 10.1016/j.rser.2017.05.082
23.
Preißinger
,
M.
, and
Schwöbel
,
J.
,
2015
, “Design, Herstellung und Test eines idealen Rankine-Fluids für die Abgaswärmenutzung in der mobilen Anwendung: Abschlussbericht über das Vorhaben Nr. 1155,”
Informationstagung Motoren
,
FVV, Forschungsvereinigung Verbrennungskraftmaschinen e.V.
,
Würzburg
.
24.
Preißinger
,
M.
,
Schwöbel
,
J.
,
Klamt
,
A.
, and
Brüggemann
,
D.
,
2017
, “High-Throughput Screening of ORC Fluids for Mobile Applications,”
Energy and Thermal Management, Air Conditioning, Waste Heat Recovery
,
Junior
,
C.
,
Jänsch
,
D. J.
,
Dingel
,
O.
, eds.,
Springer International Publishing
,
Cham
, pp.
35
40
.
25.
Scaccabarozzi
,
R.
,
Tavano
,
M.
,
Invernizzi
,
C. M.
, and
Martelli
,
E.
,
2018
, “
Comparison of Working Fluids and Cycle Optimization for Heat Recovery ORCs From Large Internal Combustion Engines
,”
Energy
,
158
(
17
), pp.
396
416
. 10.1016/j.energy.2018.06.017
26.
Daccord
,
R.
,
Melis
,
J.
,
Darmedru
,
A.
,
Davin
,
E.
,
Debaise
,
A.
,
Mandard
,
B.
,
Bouillot
,
A.
,
Watts
,
S.
, and
Durand
,
X.
,
2017
, “Integration of a Piston Expander for Exhaust Heat Recovery in a Long Haul Truck,”
Energy and Thermal Management, Air Conditioning, Waste Heat Recovery
,
Junior
,
C.
,
Jänsch
,
D.
,
Dingel
,
O.
, eds.,
Springer International Publishing
,
Cham
, pp.
53
62
.
27.
Galindo
,
J.
,
Ruiz
,
S.
,
Dolz
,
V.
,
Royo-Pascual
,
L.
,
Haller
,
R.
,
Nicolas
,
B.
, and
Glavatskaya
,
Y.
,
2015
, “
Experimental and Thermodynamic Analysis of a Bottoming Organic Rankine Cycle (ORC) of Gasoline Engine Using Swash-Plate Expander
,”
Energy. Convers. Manage.
,
103
(
15
), pp.
519
532
. 10.1016/j.enconman.2015.06.085
28.
Röhner
,
M. O.
,
Seher
,
D.
, and
Krauss
,
J.
,
2014
, “
Waste Heat Recovery System Design for Commercial Vehicles With a Rankine Process
,”
Tagungsband 9. Internationale MTZ-Fachtagung Heavy-Duty-, On- und Off-Highway-Motoren
.
ATZ live
.
29.
Park
,
T.
,
Teng
,
H.
,
Hunter
,
G. L.
,
van der Velde
,
B.
, and
Klaver
,
J.
,
2011
, “A Rankine Cycle System for Recovering Waste Heat From HD Diesel Engines: Experimental Results,”
SAE Technical Paper
,
SAE International
,
Warrendale
. 10.4271/2011-01-1337
30.
Stanzer
,
S.
,
Lang
,
M.
, and
Klammer
,
J.
,
2018
, “
Thermodynamic Influences of Lubricant in sn ORC for Waste Heat Recovery in Propulsion Systems
,”
Proceedings of 7th Transport Research Arena
,
Vienna
,
Apr. 16–19
.
31.
Franke
,
A.
,
2016
, “
Thermische Rekuperation Im Instationären Betrieb - Ein Beitrag Zur Optimierung Des Clausius-Rankine-Prozesses Zur Wärmerückgewinnung Im Kraftfahrzeug
,” Dissertation,
Technische Universität Darmstadt
,
Darmstadt
.
32.
Lemort
,
V.
,
Guillaume
,
L.
,
Legros
,
A.
,
Declaye
,
S.
, and
Quoilin
,
S.
,
2013
, “
A Comparison of Piston, Screw and Scroll Expanders for Small Scale Rankine Cycle Systems
,”
Proceedings of the 3rd International Conference on Microgeneration and Related Technologies
,
Naples
,
Apr. 15–17
.
33.
Lemort
,
V.
,
Quoilin
,
S.
,
Cuevas
,
C.
, and
Lebrun
,
J.
,
2009
, “
Testing and Modeling a Scroll Expander Integrated Into an Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3094
3102
. 10.1016/j.applthermaleng.2009.04.013
34.
VDI e. V.
, ed.,
2010
,
VDI Heat Atlas
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
35.
Schmidt
,
H.
,
Wellenhofer
,
A.
,
Muschelknautz
,
S.
,
Schmidt
,
F.
,
Schmidt
,
J.
,
Mewes
,
D.
,
Mersmann
,
A.
, and
Stichlmair
,
J.
,
2010
, “L2 Two-Phase Gas-Liquid Flow,”
VDI Heat Atlas
,
VDI, e. V.
, ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
36.
Heckle
,
M.
,
1970
,
Zweiphasenströmung Gas Flüssigkeit durch Drosselorgane: Ein neues Berechnungsverfahren der Zweiphasenströmung in Blenden, Düsen, plötzlichen Verengungen und Ventilen
, Ph.D. thesis,
VDI-Verlag
,
Düsseldorf, Germany
.
37.
Leung
,
J. C.
,
1986
, “
A Generalized Correlation for One-Component Homogeneous Equilibrium Flashing Choked Flow
,”
AIChE. J.
,
32
(
10
), pp.
1743
1746
. 10.1002/aic.690321019
38.
Henry
,
R. E.
, and
Fauske
,
H. K.
,
1971
, “
The Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices, and Short Tubes
,”
ASME J. Heat. Transfer.
,
93
(
2
), pp.
179
187
. 10.1115/1.3449782
39.
Diener
,
R.
, and
Schmidt
,
J.
,
2004
, “
Sizing of Throttling Device for Gas/Liquid Two-Phase Flow Part 1: Safety Valves
,”
Process Safety Progress
,
23
(
4
), pp.
335
344
. 10.1002/prs.10034
40.
Schmidt
,
J.
,
2012
, “
Sizing of Safety Valves for Multi-Purpose Plants According to ISO 4126-10
,”
J. Loss Prev. Process Ind.
,
25
(
1
), pp.
181
191
. 10.1016/j.jlp.2011.08.008
41.
International Organisation for Standardization
,
2010
, “Part 10: Sizing of Safety Valves for Gas/Liquid Two-Phase Flow,”
Safety Devices for Protection Against Excessive Pressure
,
ISO 4126-10:2010
,
Geneva
.
42.
Schmidt
,
J.
,
2011
, “
Auslegung Von Sicherheitsventilen Für Mehrzweckanlagen Nach ISO 4126-10
,”
Chem. Ing. Tech.
,
83
(
6
), pp.
796
812
. 10.1002/cite.201000202
43.
Diener
,
R.
,
Schmidt
,
J.
, and
Kiesbauer
,
J.
,
2004
, “
Einführung Eines Expansionsfaktors Zur Erweiterung Der IEC 60534-2-1 Für Die Auslegung Von Stellventilen Bei Mehrphasenströmung
,”
Automatisierungstechnische Praxis
,
46
(
5
), pp.
3
10
.
44.
Fritzson
,
P. A.
,
2015
,
Principles of Object Oriented Modeling and Simulation With Modelica 3.3
, 2nd ed.,
John Wiley & Sons Inc
,
Hoboken, NJ
.
45.
TILMedia Suite
,
2018
, www.tlk-thermo.com/index.php/en/software/tilmedia-suite,
TLK-Thermo GmbH
,
Accessed Nov 13, 2019
.
46.
Modelica User's Guide
,
2018
, https://doc.modelica.org/om/Modelica.html,
Modelica Association
.
Accessed Dec 1, 2018
.
47.
Thome
,
J. R.
,
1995
, “
Comprehensive Thermodynamic Approach to Modeling Refrigerant-Lubricating Oil Mixtures
,”
HVAC&R Res.
,
1
(
2
), pp.
110
125
. 10.1080/10789669.1995.10391313
48.
Youbi-Idrissi
,
M.
, and
Bonjour
,
J.
,
2008
, “
The Effect of Oil in Refrigeration: Current Research Issues and Critical Review of Thermodynamic Aspects
,”
Int. J. Refrig.
,
31
(
2
), pp.
165
179
. 10.1016/j.ijrefrig.2007.09.006
49.
Marcelino Neto
,
M. A.
, and
Barbosa
,
J. R.
,
2013
, “
A Departure-Function Approach to Calculate Thermodynamic Properties of Refrigerant-Oil Mixtures
,”
Int. J. Refrig.
,
36
(
3
), pp.
972
979
. 10.1016/j.ijrefrig.2012.12.004
You do not currently have access to this content.