Abstract

This paper describes a numerical investigation to study the effect of injecting mist (tiny water droplets) into the cooling air used to cool down rotating gas turbine blades. In this study, the conjugate heat transfer method is used which consists of the simulation of the air/mist fluid flow inside and outside the blades as well as the heat conduction through the blade body. The complete 3D blade with internal cooling passages and external film cooling holes on the surface and blade tip is simulated in a rotating, periodic sector of the blade. The discrete phase model (DPM) is used to simulate and track the evaporation and movement of the tiny water droplets. The rotation effect of the turbine blade is included in the computational fluid dynamics (CFD) simulation by using the moving reference frame method. The effects of different parameters such as the mist/air ratio (10–20%) and the mist droplets size (20–40 µm) on mist cooling enhancement are investigated. The results show that the mist cooling enhancements are about 10–25% on the outer surface of the blade and reach 50% in some locations inside the blade on the internal cooling passages walls. Most of the liquid droplets completely evaporate inside the internal cooling passages; only a limited amount of mist is able to escape from the film cooling holes to enhance the blade outer surface and blade tip cooling. The effect of 10% mist on enhanced cooling can be converted to an equivalent of a 30% reduction in cooling air flow.

References

1.
Ito
,
S. S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power.
,
100
(
3
), pp.
476
481
. 10.1115/1.3446382
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
. 10.2514/1.18034
3.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
. 10.1115/1.1860562
4.
Han
,
J.
, and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
162
178
. 10.1111/j.1749-6632.2001.tb05850.x
5.
Dunn
,
M. G.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine. Part I: Time Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
. doi.org/10.1115/1.3262029
6.
Dunn
,
M. G.
,
George
,
W. K.
,
Rae
,
W. J.
,
Woodward
,
S. H.
,
Moller
,
J. C.
, and
Seymour
,
J. P.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine, Part II: Description of Analysis Technique and Typical Time-Resolved Measurements
,”
ASME J. Turbomach.
,
108
(
1
), pp.
98
107
. doi.org/10.1115/1.3262030
7.
Takeishi
,
K. K.
,
Aoki
,
S. S.
,
Sato
,
T. T.
, and
Tsukagoshi
,
K. K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
. 10.1115/1.2928036
8.
Takagi
,
T.
, and
Ogasawara
,
M.
,
1974
, “
Some Characteristics of Heat and Mass Transfer in Binary Mist Flow
,”
Proceedings of 5th International Heat Transfer Conference
,
Tokyo, Japan
,
Sept. 3–7
, Vol.
4
, pp.
350
354
. doi: 10.1615/IHTC5.780
9.
Mori
,
Y.
,
Hijikata
,
K.
, and
Yasunaga
,
T.
,
1982
, “
Mist Cooling of Very Hot Tubules with Reference to Through-Hole Cooling of Gas Turbine Blades
,”
Intl. J. Heat Mass Transfer
,
25
(
9
), pp.
1271
1278
. 10.1016/0017-9310(82)90121-1
10.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
,
1998
, “
An Experimental Study of Turbine Vane Heat Transfer With Water–Air Cooling
,”
ASME J. Turbomach.
,
120
(
1
), pp.
50
60
. 10.1115/1.2841387
11.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube Part I: Experimental System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
360
365
. 10.1115/1.555460
12.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part II: Results and Modeling
,”
ASME J. Turbomach.
,
122
(
2
), pp.
366
374
. 10.1115/1.555451
13.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a 180-Degree Tube Bend
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
749
756
. 10.1115/1.1287794
14.
Zhao
,
L.
, and
Wang
,
T.
,
2014
, “
An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils—Part I: Heat Transfer
,”
ASME J. Turbomach.
,
136
(
7
), p.
071006
. 10.1115/1.4025736
15.
Zhao
,
L.
, and
Wang
,
T.
,
2013
, “
An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils: Part 2—Two-Phase Flow Measurements and Droplet Dynamics
,”
ASME J. Turbomach.
,
136
(
7
), p.
071007
. 10.1115/1.4025738
16.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist/Air Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part 1: Heat Transfer
,”
ASME J. Heat Trans.
,
140
(
4
), p.
042201
. 10.1115/1.4037641
17.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist/Air Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part II: Two-Phase Flow Measurements and Droplet Dynamics
,”
ASME J. Heat Trans.
,
140
(
4
), p.
042202
. 10.1115/1.4037642
18.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
, “
Computational Analysis of Mist/air Cooling in a Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
61
, pp.
554
564
. 10.1016/j.ijheatmasstransfer.2013.02.006
19.
Dhanasekaran
,
T. S.
, and
Wang
,
Ting
,
2012
, “
Simulation of Mist Film Cooling on Rotating Gas Turbine Blades
,”
ASME J. Heat Trans.
,
134
(
1
), p.
011501
. 10.1115/1.4004480
20.
Jiang
,
Y.
,
Zheng
,
Q.
,
Dong
,
P.
,
Zhang
,
H.
, and
Yu
,
F.
,
2014
, “
Research on Heavy-Duty Gas Turbine Vane High Efficiency Cooling Performance Considering Coolant Phase Transfer
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1175
1191
. 10.1016/j.applthermaleng.2014.09.023
21.
Jiang
,
Y.
,
Zheng
,
Q.
,
Dong
,
P.
,
Yue
,
G.
, and
Gao
,
J.
,
2014
, “
Numerical Simulation on Turbine Blade Leading-Edge High Efficiency Film Cooling by the Application of Water Mist
,”
Numer. Heat Transfer Part A
,
66
(
12
), pp.
1341
1364
. 10.1080/10407782.2014.915690
22.
Bian
,
Q.
,
Wang
,
J.
,
Chen
,
Y.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2017
, “
Numerical Investigation of Mist/Air Impingement Cooling on Ribbed Blade Leading-Edge Surface
,”
J. Environ. Manage.
,
203
(
3
), pp.
1062
1071
. doi.org/10.1016/j.jenvman.2017.05.052
23.
Ragab
,
R.
, and
Wang
,
T.
,
2012
, “
An Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes
,”
ASME Turbo Expo: Heat Transfer
,
Copenhagen, Denmark
,
June 11–15
, Vol.
4
, pp.
1809
1821
. doi:10.1115/GT2012-70110
24.
Ragab
,
R.
, and
Wang
,
T.
,
2013
, “
Investigation of Applicability of Using Water Mist for Cooling High-Pressure Turbine Components via Rotor Cavity Feed Channels
,”
Proceedings of ASME Summer Heat Transfer Conference
,
Minnesota, MN
,
July 14–19
, p.
V003T08A004
, 1–13. doi:10.1115/HT2013-17150
25.
Wang
,
T.
, and
Ragab
,
R.
,
2020
, “
Investigation of Applicability of Transporting Water Mist for Cooling Turbine Blades
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011009
. 10.1115/1.4042860
26.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2010
, “
Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling With an Application in Gas Turbine Blades
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122201
. 10.1115/1.4002394
27.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2008
, “
Validation of Mist/Steam Cooling CFD Model in a Horizontal Tube
,”
Proceedings of ASME Summer Heat Transfer Conference
, 2, pp.
611
624
,
paper HT08-56280
.
28.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, England
.
29.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
. 10.1017/S0022112080001905
30.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
. 10.1017/S0022112065000824
31.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
. 10.1080/02786829208959550
32.
Ranz
,
W. E.
, and
Marshal
,
W. R.
, Jr.
,
1952
, “
Evaporation of Water From Drops, Part І
,”
J. Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
33.
Ranz
,
W. E.
, and
Marshal
,
W. R.
, Jr.
,
1952
, “
Evaporation of Water From Drops, Part П
,”
J. Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
34.
Watchers
,
L. H. J.
, and
Westerling
,
N. A.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
J. Chem. Eng. Sci.
,
21
(
11
), pp.
1047
1056
. 10.1016/0009-2509(66)85100-X
35.
Rosin
,
P.
, and
Rammler
,
E.
,
1933
, “
The Laws Governing the Fineness of Powdered Coal
,”
J. Inst. Fuel
,
7
, pp.
29
36
.
You do not currently have access to this content.