Abstract

To guide ultra-compact combustor (UCC) engineering, simulations were conducted about turbulent premixed combustion in a high acceleration field which is called high-g combustion, along with a detailed investigation on the evolution of turbulent premixed flame in a rotating tube of stoichiometric propane-air. The rotation of the tube was mimicked by modified momentum source term in the unsteady 2D simulations to decouple the centrifugal force and the Coriolis force, the latter of which was usually neglected in previous reports. A good agreement was found between the simulation result and experimental data, along with a discovery of the phenomenon that flame speed was accelerated by the imposed acceleration field. Further study indicated that the flame acceleration phenomenon can be attributed to the flame corrugation induced by the Rayleigh–Taylor instability (RTI). The Coriolis force was found to be non-negligible in high-g combustion since the Coriolis acceleration could be at the same magnitude as the centrifugal acceleration, and the observed flame speed was nearly 20% lower without the Coriolis force. The current study revealed that the high-g combustion in an open chamber due to the absence of pressure wave/flame front interaction could not be fully compatible with predictions derived from closed chamber experiments and that the Coriolis force could not be ignored in the high-g combustion process.

References

1.
Zelina
,
J.
,
Ehret
,
J.
,
Hancock
,
R. D.
,
Shouse
,
D. T.
,
Roquemore
,
W. M.
, and
Sturgess
,
G. J.
,
2002
, “
Ultra-Compact Combustion Technology Using High Swirl for Enhanced Burning Rate
,”
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
AIAA Paper 2002-3725
.
2.
Hsu
,
K. Y.
,
Goss
,
L. P.
, and
Roquemore
,
W. M.
,
1998
, “
Characteristics of a Trapped-Vortex Combustor
,”
J. Propul. Power
,
14
(
1
), pp.
57
65
. 10.2514/2.5266
3.
Zelina
,
J.
,
Shouse
,
D. T.
, and
Neuroth
,
C.
,
2005
, “
High-Pressure Tests of a High-g, Ultra-Compact Combustor
,”
41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
AIAA Paper 2005-3779
.
4.
Sirignano
,
W. A.
, and
Liu
,
F.
,
1999
, “
Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine
,”
J. Propul. Power
,
15
(
1
), pp.
111
118
. 10.2514/2.5398
5.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
J. Eng. Gas Turb. Power
,
131
(
2
), p.
021503
. 10.1115/1.2836613
6.
Spytek
,
C. J.
,
2012
, “
Application of an Inter-Turbine Burner Using Core Driven Vitiated Air in a Gas Turbine Engine
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
pp.
1017
1028
.
7.
Kostka
,
S.
,
Branam
,
R. D.
,
Renfro
,
M. W.
,
Lakusta
,
P. J.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2012
, “
Laser-Induced Fluorescence Measurements of Product Penetration Within an Ultra-Compact-Combustor
,”
J. Propul. Power
,
28
(
3
), pp.
617
624
. 10.2514/1.B34092
8.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
J. Eng. Gas Turb. Power
,
135
(
5
), p.
051502
. 10.1115/1.4007866
9.
Wilson
,
J. D.
,
Damele
,
C. J.
, and
Polanka
,
M. D.
,
2014
, “
Flame Structure Effects at High G-Loading
,”
J. Eng. Gas Turb. Power
,
136
(
10
), p.
101502
. 10.1115/1.4027128
10.
Wilson
,
J. D.
, and
Polanka
,
M. D.
,
2013
, “
Reduction of Rayleigh Losses in a High G-Loaded Ultra Compact Combustor
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
ASME Paper V01AT04A057
.
11.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2015
, “
Optimization of Ultra Compact Combustor Flow Path Splits
,”
53rd AIAA Aerospace Sciences Meeting
,
AIAA Paper 2015-0100
.
12.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2018
, “
A New Spin on Small-Scale Combustor Geometry
,”
J. Eng. Gas Turb. Power
,
141
(
1)
, p.
011504
. 10.1115/1.4040658
13.
Lewis
,
G. D.
,
1973
, “
Centrifugal-Force Effects on Combustion
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
413
419
. 10.1016/S0082-0784(73)80040-2
14.
Syred
,
N.
,
Claypole
,
T. C.
, and
Styles
,
A. C.
,
1982
, “
The Role of Centrifugal Force Fields in the Stabilization of Swirling Flames
,”
J. Energy
,
6
(
5
), pp.
344
345
. 10.2514/3.48052
15.
Ishizuka
,
S.
,
1985
, “
On the Behavior of Premixed Flames in a Rotating Flow Field: Establishment of Tubular Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
287
294
. 10.1016/S0082-0784(85)80513-0
16.
Chomiak
,
J.
,
Gorczakowski
,
A.
,
Parra
,
T.
, and
Jarosinski
,
J.
,
2007
, “
Flame Kernel Growth in a Rotating Gas
,”
Combust. Sci. Technol.
,
180
(
2
), pp.
391
399
. 10.1080/00102200701740964
17.
Sakai
,
Y.
, and
Ishizuka
,
S.
,
1996
, “
The Phenomena of Flame Propagation in a Rotating Tube
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
847
853
. 10.1016/S0082-0784(96)80294-3
18.
Gorczakowski
,
A.
,
Zawadzki
,
A.
,
Jarosinski
,
J.
, and
Veyssiere
,
B.
,
2000
, “
Combustion Mechanism of Flame Propagation and Extinction in a Rotating Cylindrical Vessel
,”
Combust. Flame
,
120
(
3
), pp.
359
371
. 10.1016/S0010-2180(99)00095-4
19.
Dwyer
,
H. A.
, and
Hasegawa
,
T.
,
2002
, “
Some Flows Associated With Premixed Laminar Flame Propagation in a Rotating Tube Flow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1471
1477
. 10.1016/S1540-7489(02)80180-8
20.
Lapsa
,
A.
, and
Dahm
,
W.
,
2009
, “
Hyperacceleration Effects on Turbulent Combustion in Premixed Step-Stabilized Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1731
1738
. 10.1016/j.proci.2008.05.038
21.
Long
,
B. S.
,
Briones
,
A. M.
,
Stouffer
,
S. D.
, and
Rankin
,
B. A.
,
2017
, “
Effect of Rayleigh-Taylor Instability on Backward-Facing-Step Stabilized Turbulent Premixed Flames
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
ASME Paper V04BT04A027
.
22.
Katta
,
V.
,
Blunck
,
D.
, and
Roquemore
,
M.
,
2013
, “
Effect of Centrifugal Forces on Flame Stability in an Ultra-Compact Combustor
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
AIAA Paper 2013-1046
.
23.
Lietz
,
C.
,
Heye
,
C.
,
Raman
,
V.
, and
Blunck
,
D.
,
2014
, “
Flame Stability Analysis in an Ultra Compact Combustor Using Large-Eddy Simulation
,”
52nd Aerospace Sciences Meeting
,
AIAA Paper 2014-1022
.
24.
Sun
,
L.
,
Huang
,
Y.
, and
Ji
,
Y.
,
2017
, “
Theoretical Analysis for the Centrifugal Effect on Premixed Flame Speed in a Closed Tube
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18658
18667
. 10.1016/j.ijhydene.2017.04.186
25.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T.
,
2014
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
J. Eng. Gas Turb. Power
,
137
(
1
), p.
011501
. 10.1115/1.4028057
26.
Rayleigh
,
L.
, and
Strutt
,
J. W.
,
1882
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. Lond. Math. Soc.
,
s1–14
(
1
), pp.
170
177
. 10.1112/plms/s1-14.1.170
27.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I
,”
Proc. Royal Soc. Lond.
,
201
(
1065
), pp.
192
196
. 10.1098/rspa.1950.0052
28.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Phys. D
,
12
(
1
), pp.
3
18
. 10.1016/0167-2789(84)90510-4
29.
Read
,
K. I.
,
1984
, “
Experimental Investigation of Turbulent Mixing by Rayleigh-Taylor Instability
,”
Phys. D
,
12
(
1
), pp.
45
58
. 10.1016/0167-2789(84)90513-X
30.
Youngs
,
D.
,
1984
, “
Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability
,”
Phys. D
,
3
(
1–3
), pp.
32
44
. 10.1016/0167-2789(84)90512-8
31.
Glimm
,
J.
,
Grove
,
J. W.
,
Li
,
X. L.
,
Oh
,
W.
, and
Sharp
,
D. H.
,
2001
, “
A Critical Analysis of Rayleigh–Taylor Growth Rates
,”
J. Comput. Phys.
,
169
(
2
), pp.
652
677
. 10.1006/jcph.2000.6590
32.
Cook
,
A. W.
,
Cabot
,
W.
, and
Miller
,
P. L.
,
2004
, “
The Mixing Transition in Rayleigh–Taylor Instability
,”
ASME J. Fluid Mech.
,
511
(
14
), pp.
333
362
. 10.1017/S0022112004009681
33.
Olson
,
B. J.
,
Larsson
,
J.
,
Lele
,
S. K.
, and
Cook
,
A. W.
,
2011
, “
Nonlinear Effects in the Combined Rayleigh-Taylor/Kelvin-Helmholtz Instability
,”
Phys. Fluids
,
23
(
11
), p.
114107
. 10.1063/1.3660723
34.
Hicks
,
E.
, and
Rosner
,
R.
,
2013
, “
Gravitationally Unstable Flames: Rayleigh-Taylor Stretching Versus Turbulent Wrinkling
,”
Astrophys. J.
,
771
(
2
), pp.
135
146
. 10.1088/0004-637X/771/2/135
35.
Lee
,
H. G.
, and
Kim
,
J.
,
2013
, “
Numerical Simulation of the Three-Dimensional Rayleigh–Taylor Instability
,”
Comput. Math. Appl.
,
66
(
8
), pp.
1466
1474
. 10.1016/j.camwa.2013.08.021
36.
Talat
,
N.
,
Mavrič
,
B.
,
Hatić
,
V.
,
Bajt
,
S.
, and
Šarler
,
B.
,
2018
, “
Phase Field Simulation of Rayleigh–Taylor Instability With a Meshless Method
,”
Eng. Anal. Bound. Elem.
,
87
(
2
), pp.
78
89
. 10.1016/j.enganabound.2017.11.015
37.
Lewis
,
G. D.
,
Shadowen
,
J. H.
, and
Thayer
,
E. B.
,
1977
, “
Swirling Flow Combustion
,”
J. Energy
,
1
(
4
), pp.
201
205
. 10.2514/3.62330
38.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
. 10.1016/j.combustflame.2004.03.008
39.
Smith
,
G. P.
,
Michael Frenklach
,
D. M. G.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Thomas Bowman
,
C.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
GRI-Mech 3.0
,” Available: http://combustion.berkeley.edu/gri-mech/
40.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st Aerospace Sciences Meeting and Exhibit
,
AIAA Paper 2003-767
.
41.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, PA
, pp.
56
58
.
42.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
. 10.1007/s10494-010-9264-5
43.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,”
NASA No. NASA TM-4513
.
44.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
. 10.1063/1.1747673
45.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Available: https://www.cantera.org
46.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C.
,
Coloman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure of Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, p.
078001
.
You do not currently have access to this content.