Abstract

Additive manufacturing (AM) enables improved heat exchanger (HX) designs where performance is based on the achievable geometry. However, consequences of the AM process that affect HX performance such as increased surface roughness, dimensional tolerance issues, and defects like cracks may vary among identically designed AM parts due to AM machine settings. This paper experimentally compares the thermal and hydraulic performance of three AM HXs built using a traditionally manufactured, stamped aluminum oil cooler design. The AM HXs exhibited significantly higher air-side pressure drop and higher heat transfer rate than the traditional HX in large part due to increased AM surface roughness. Among AM HXs, one AM HX had notably higher heat transfer rate and air-side pressure drop due to poor print quality on the thin air-side fin features. The fin thickness among AM HXs also varied by about 15%, and there were only slight differences in surface roughness. This study indicates that functional HXs built using AM vary in performance even when the same digital model is used to print them and that AM HXs as a group can perform considerably differently than their traditional counterparts.

References

1.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
, “
Performance Characterization of an Additively Manufactured Titanium (Ti64) Heat Exchanger for an Air-Water Cooling Application
,”
Proceedings of the ASME 2016 Heat Transfer Summer Conference
, ASME Paper No. HT2016-1059. 10.1115/HT2016-1059
2.
Arie
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
(
Jan.
), pp.
187
198
. 10.1016/j.applthermaleng.2017.09.140
3.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Rao
,
V. V.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer
,
139
(
3
), p.
031901
. 10.1115/1.4035068
4.
Hathaway
,
B. J.
,
Garde
,
K.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2018
, “
Design and Characterization of an Additive Manufactured Hydraulic Oil Cooler
,”
Int. J. Heat Mass Transfer
,
117
(
Feb.
), pp.
188
200
. 10.1016/j.ijheatmasstransfer.2017.10.013
5.
Saltzman
,
D.
,
Bichnevicius
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
(
June
), pp.
254
263
. 10.1016/j.applthermaleng.2018.04.032
6.
Achaichia
,
A.
, and
Cowell
,
T. A.
,
1988
, “
Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surfaces
,”
Exp. Therm. Fluid Sci.
,
1
(
2
), pp.
147
157
. 10.1016/0894-1777(88)90032-5
7.
Kim
,
M.-H.
, and
Bullard
,
C. W.
,
2002
, “
Air-Side Thermal Hydraulic Performance of Multi-Louvered Fin Aluminum Heat Exchangers
,”
Int. J. Refrig.
,
25
(
3
), pp.
390
400
. 10.1016/S0140-7007(01)00025-1
8.
Chang
,
Y.-J.
, and
Wang
,
C.-C.
,
1997
, “
A Generalized Heat Transfer Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
. 10.1016/0017-9310(96)00116-0
9.
Wang
,
C. C.
,
Lee
,
C. J.
,
Chang
,
C. T.
, and
Lin
,
S. P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
. 10.1016/S0017-9310(98)00302-0
10.
Li
,
W.
, and
Wang
,
X.
,
2010
, “
Heat Transfer and Pressure Drop Correlations for Compact Heat Exchangers With Multi-Region Louver Fins
,”
Int. J. Heat Mass Transfer
,
53
(
15
), pp.
2955
2962
. 10.1016/j.ijheatmasstransfer.2010.04.002
11.
Dong
,
J.
,
Chen
,
J.
,
Chen
,
Z.
,
Zhang
,
W.
, and
Zhou
,
Y.
,
2007
, “
Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1506
1515
. 10.1016/j.enconman.2006.11.023
12.
Ryu
,
K.
, and
Lee
,
K.-S.
,
2015
, “
Generalized Heat-Transfer and Fluid-Flow Correlations for Corrugated Louvered Fins
,”
Int. J. Heat Mass Transfer
,
83
(
Apr.
), pp.
604
612
. 10.1016/j.ijheatmasstransfer.2014.12.044
13.
Webb
,
R. L.
, and
Trauger
,
P.
,
1991
, “
Flow Structure in the Louvered Fin Heat Exchanger Geometry
,”
Exp. Therm. Fluid Sci.
,
4
(
2
), pp.
205
217
. 10.1016/0894-1777(91)90065-Y
14.
Springer
,
M. E.
, and
Thole
,
K. A.
,
1998
, “
Experimental Design for Flowfield Studies of Louvered Fins
,”
Exp. Therm. Fluid Sci.
,
18
(
3
), pp.
258
269
. 10.1016/S0894-1777(98)10022-5
15.
Springer
,
M. E.
, and
Thole
,
K. A.
,
1999
, “
Entry Region of Louvered Fin Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
19
(
4
), pp.
223
232
. 10.1016/S0894-1777(99)00028-X
16.
Tafti
,
D. K.
,
Wang
,
G.
, and
Lin
,
W.
,
2000
, “
Flow Transition in a Multilouvered Fin Array
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
901
919
. 10.1016/S0017-9310(99)00190-8
17.
Tafti
,
D. K.
, and
Zhang
,
X.
,
2001
, “
Geometry Effects on Flow Transition in Multilouvered Fins—Onset, Propagation, and Characteristic Frequencies
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4195
4210
. 10.1016/S0017-9310(01)00079-5
18.
DeJong
,
N. C.
, and
Jacobi
,
A. M.
,
2003
, “
Localized Flow and Heat Transfer Interactions in Louvered-Fin Arrays
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
443
455
. 10.1016/S0017-9310(02)00292-2
19.
Hsieh
,
C.-T.
, and
Jang
,
J.-Y.
,
2012
, “
Parametric Study and Optimization of Louver Finned-Tube Heat Exchangers by Taguchi Method
,”
Appl. Therm. Eng.
,
42
(
Sept.
), pp.
101
110
. 10.1016/j.applthermaleng.2012.03.003
20.
Ryu
,
K.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2014
, “
Optimal Design of a Corrugated Louvered Fin
,”
Appl. Therm. Eng.
,
68
(
1
), pp.
76
79
. 10.1016/j.applthermaleng.2014.04.022
21.
Suga
,
K.
, and
Aoki
,
H.
,
1995
, “
Numerical Study on Heat Transfer and Pressure Drop in Multilouvered Fins
,”
J. Enhanced Heat Transfer
,
2
(
3
), pp.
231
238
. 10.1615/JEnhHeatTransf.v2.i3.60
22.
Hsieh
,
C.-T.
, and
Jang
,
J.-Y.
,
2006
, “
3-D Thermal-Hydraulic Analysis for Louver Fin Heat Exchangers With Variable Louver Angle
,”
Appl. Therm. Eng.
,
26
(
14
), pp.
1629
1639
. 10.1016/j.applthermaleng.2005.11.019
23.
Jang
,
J.-Y.
, and
Chen
,
C.-C.
,
2015
, “
Optimization of Louvered-Fin Heat Exchanger With Variable Louver Angles
,”
Appl. Therm. Eng.
,
91
(
Dec.
), pp.
138
150
. 10.1016/j.applthermaleng.2015.08.009
24.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
. 10.1115/1.4032167
25.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
. 10.1115/1.4034555
26.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
(
Aug.
), pp.
58
74
. 10.1016/j.ijheatmasstransfer.2014.03.037
27.
Kirsch
,
K. L.
,
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
, “
Repeatability in Performance of Micro Cooling Geometries Manufactured With Laser Powder Bed Fusion
,”
Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference
, Paper 2017-4706.
28.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
29.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
(
Oct.
), pp.
36
62
. 10.1016/j.addma.2015.07.001
30.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
. 10.1063/1.4937809
31.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9
), pp.
2743
2751
. 10.1007/s00170-012-4688-9
32.
Mohammadi
,
M.
, and
Asgari
,
H.
,
2018
, “
Achieving Low Surface Roughness AlSi10Mg_200C Parts Using Direct Metal Laser Sintering
,”
Addit. Manuf.
,
20
(
Mar.
), pp.
23
32
. 10.1016/j.addma.2017.12.012
33.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1–4
(
Oct.
), pp.
77
86
. 10.1016/j.addma.2014.08.001
34.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
. 10.1115/1.4031071
35.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
(
Apr.
), pp.
36
45
. 10.1016/j.actamat.2016.02.014
36.
Guo
,
Q.
,
Zhao
,
C.
,
Escano
,
L. I.
,
Young
,
Z.
,
Xiong
,
L.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Brown
,
B.
,
Sun
,
T.
, and
Chen
,
L.
,
2018
, “
Transient Dynamics of Powder Spattering in Laser Powder Bed Fusion Additive Manufacturing Process Revealed by In-Situ High-Speed High-Energy X-Ray Imaging
,”
Acta Mater.
,
151
(
June
), pp.
169
180
. 10.1016/j.actamat.2018.03.036
37.
Gunenthiram
,
V.
,
Peyre
,
P.
,
Schneider
,
M.
,
Dal
,
M.
,
Coste
,
F.
,
Koutiri
,
I.
, and
Fabbro
,
R.
,
2018
, “
Experimental Analysis of Spatter Generation and Melt-Pool Behavior During the Powder Bed Laser Beam Melting Process
,”
J. Mater. Process. Technol.
,
251
(
Jan.
), pp.
376
386
. 10.1016/j.jmatprotec.2017.08.012
38.
Leung
,
C. L. A.
,
Marussi
,
S.
,
Atwood
,
R. C.
,
Towrie
,
M.
,
Withers
,
P. J.
, and
Lee
,
P. D.
,
2018
, “
In Situ X-Ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing
,”
Nat. Commun.
,
9
(
1
), pp.
1
9
. 10.1038/s41467-017-02088-w
39.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
40.
Airflow Systems
,
2018
, “
NDM Dimensional Drawings
,” https://www.airflow-systems.com/wp-content/uploads/Airflow-NDM-Drawings.pdf, Accessed October 1, 2018.
You do not currently have access to this content.