Abstract

Design optimization of a three-dimensional (3D) heat flow structure for power electronics gate drive circuit thermal management is described. Optimization methods are described in the creation of several structural concepts targeted toward simultaneous temperature reduction of multiple gate drive integrated circuit (IC) devices. Each heat flow path concept is intended for seamless integration based on power electronics packaging space constraints, while maintaining required electrical isolation. The design synthesis and fabrication of a select concept prototype is presented along with the development of an experimental test bench for thermal performance characterization. Experimental results indicate a significant 45 ∘C maximum temperature reduction for the gate drive IC devices in a laboratory environment, which translates to an estimated 41 °C maximum temperature reduction under high temperature (∼100 °C) ambient conditions. The technical approach and design strategy are applicable to future wide band-gap (WBG) electronics packaging applications, where enhanced 3D thermal routing is expected to be critical to maximizing volumetric power density.

References

1.
Nozawa
,
N.
,
Maekawa
,
T.
,
Nozawa
,
S.
, and
Asakura
,
K.
,
2009
, “
Development of Power Control Unit for Compact-Class Vehicle
,”
SAE Int. J. Passeng. Cars - Electron. Electr. Syst.
,
2
(
1
), pp.
376
382
.
2.
Kubota
,
S.
,
Sakurai
,
T.
, and
Okada
,
H.
,
2009
, “
Size and Weight Reduction Technology for a Hybrid System
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1143
1150
.
3.
Kitazawa
,
O.
,
Kikuchi
,
T.
,
Nakashima
,
M.
,
Tomita
,
Y.
,
Kosugi
,
H.
, and
Kaneko
,
T.
,
2016
, “
Development of Power Control Unit for Compact-Class Vehicle
,”
SAE Int. J. Alt. Power
,
5
(
2
), pp.
278
285
.
4.
Sakai
,
Y.
,
Ishiyama
,
H.
, and
Kikuchi
,
T.
,
2007
, “
Power Control Unit for High Power Hybrid System
,”
SAE
Paper No. 2007-01-0271
.
5.
Ivanova
,
M.
,
Avenas
,
Y.
,
Schaeffer
,
C.
,
Dezord
,
J.-B.
, and
Schulz-Harder
,
J.
,
2006
, “
Heat Pipe Integrated in Direct Bonded Copper (DBC) Technology for Cooling of Power Electronics Packaging
,”
IEEE Trans. Power Electr.
,
21
(
6
), pp.
1541
1547
.
6.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
7.
Zhou
,
F.
,
Liu
,
Y.
,
Liu
,
Y.
,
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2016
, “
Modular Design for a Single-Phase Manifold Mini/Microchannel Cold Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021010
.
8.
Waye
,
S. K.
,
Narumanchi
,
S.
,
Mihalic
,
M.
,
Moreno
,
G.
,
Bennion
,
K.
, and
Jeffers
,
J.
,
2014
, “
Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces
,”
14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
1064
1074
.
9.
Wadsworth
,
D.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
891
898
.
10.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2017
, “
Two-Phase Jet Impingement Cooling for High Heat Flux Wide Band-Gap Devices Using Multi-Scale Porous Surfaces
,”
Appl. Therm. Eng.
,
110
(
5
), pp.
10
17
.
11.
Marz
,
M.
,
2003
, “
Thermal Management in High-Density Power Converters
,”
IEEE
International Conference on Industrial Technology
, Maribor, Slovenia, Dec. 10–12, pp.
1196
1201
.
12.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R.
, and
Christopher
,
M.
,
2004
, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
164
176
.
13.
Wrzecionko
,
B.
,
Bortis
,
D.
, and
Kolar
,
J. W.
,
2014
, “
A 120∘C Ambient Temperature Forced Air-Cooled Normally-Off SiC JFET Automotive Inverter System
,”
IEEE Trans. Power Electr.
,
29
(
5
), pp.
2345
2358
.
14.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mat. Reliab.
,
4
(
4
), pp.
568
585
.
15.
Integrated Circuit Division
,
2017
, “Aug. IXD_609 9-Ampere Low-Side Ultrafast MOSFET Drivers,” Integrated Circuit Division, Beverly, MA, accessed Sept. 19, 2018, http://www.ixysic.com/home/pdfs.nsf/www/IXD_609.pdf/$file/IXD_609.pdf
16.
Steinberg
,
D. S.
,
1991
,
Cooling Techniques for Electronic Equipment
, 2nd ed.,
Wiley
,
New York
.
17.
Ferreira
,
B.
, and
Josifovic
,
I.
,
2016
, “
Passive Components for a 3D Environment
,”
International Symposium on 3D Power Electronics Integration and Manufacturing
(
3D-PEIM
), Raleigh, NC, June 13–15.
18.
Cossale
,
M.
,
Paredes
,
S.
,
Luijten
,
R. P.
, and
Michel
,
B.
,
2015
, “
Combined Power Delivery and Cooling for High Density, High Efficiency Microservers
,”
21st International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC
), Paris, France, Sept. 30–Oct. 2, pp.
1
6
.
19.
Dunn
,
J.
,
2004
, “
Matching MOSFET Driver to MOSFETs
,” Microchip Technology Inc., Chandler, AZ, accessed Sept. 19, 2018, http://ww1.microchip.com/downloads/en/AppNotes/00799b.pdf
20.
Chen
,
Y.
,
Lee
,
F. C.
,
Amoroso
,
L.
, and
Wu
,
H.-P.
,
2004
, “
A Resonant MOSFET Gate Driver With Efficient Energy Recovery
,”
IEEE Trans. Power Electr.
,
19
(
2
), pp.
470
477
.
21.
Zhang
,
Z.
,
Li
,
F. F.
, and
Liu
,
Y. F.
,
2014
, “
A High-Frequency Dual-Channel Isolated Resonant Gate Driver With Low Gate Drive Loss for ZVS Full-Bridge Converters
,”
IEEE Trans. Power Electr.
,
29
(
6
), pp.
3077
3090
.
22.
Zhang
,
Z.
,
Eberle
,
W.
,
Yang
,
Z.
,
Liu
,
Y. F.
, and
Sen
,
P. C.
,
2008
, “
Optimal Design of Resonant Gate Driver for Buck Converter Based on a New Analytical Loss Model
,”
IEEE Trans. Power Electr.
,
23
(
2
), pp.
653
666
.
23.
Anthony
,
P.
,
McNeill
,
N.
, and
Holliday
,
D.
,
2014
, “
High-Speed Resonant Gate Driver With Controlled Peak Gate Voltage for Silicon Carbide MOSFETs
,”
IEEE Trans. Ind. Appl.
,
50
(
1
), pp.
573
583
.
24.
Moench
,
S.
,
Kallfass
,
I.
,
Reiner
,
R.
,
Weiss
,
B.
,
Waltereit
,
P.
,
Quay
,
R.
, and
Ambacher
,
O.
,
2016
, “
Single-Input GaN Gate Driver Based on Depletion-Mode Logic Integrated With a 600 V GaN-on-Si Power Transistor
,”
IEEE fourth Workshop on Wide Bandgap Power Devices and Applications
(
WiPDA
), Fayetteville, AR, Nov. 7–9, pp.
204
209
.
25.
Che
,
S.
,
Nagai
,
S.
,
Negoro
,
N.
,
Kawai
,
Y.
,
Tabata
,
O.
,
Enomoto
,
S.
,
Anda
,
Y.
, and
Hatsuda
,
T.
,
2017
, “
A1W Power Consumption GaN-Based Isolated Gate Driver for a 1.0 MHz GaN Power System
,”
29th International Symposium on Power Semiconductor Devices and IC's
(
ISPSD
), Sapporo, Japan, May 28–June 1, pp.
33
36
.
26.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization—Theory, Methods and Applications
, 2nd ed.,
Springer
,
Berlin
.
27.
Dede
,
E. M.
,
Lee
,
J.
, and
Nomura
,
T.
,
2014
,
Multiphysics Optimization: Electromechanical System Applications and Optimization
,
Springer
,
London
.
28.
Hamada
,
K.
,
Nagao
,
M.
,
Ajioka
,
M.
, and
Kawai
,
F.
,
2015
, “
SiC–Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles
,”
IEEE Trans. Electron Dev.
,
62
(
2
), pp.
278
285
.
29.
Toyota—USA Newsroom,
2017
, “Nov. 2016–2017 Toyota Prius PCU On the WWW,” Toyota Motor Sales, U.S.A., Inc., Torrance, CA, accessed Apr. 19, 2017, http://toyotanews.pressroom.toyota.com/
30.
ANSYS, Inc.
,
2016
, “
ANSYS® Heat Transfer, Release 17.2
,” ANSYS, Canonsburg, PA.
31.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2000
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
32.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
, 5th ed,
Wiley
,
Hoboken, NJ
.
33.
Hull
,
D.
, and
Clyne
,
T. W.
,
1995
,
An Introduction to Composite Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
34.
Sedra
,
A. S.
, and
Smith
,
K. C.
,
2004
,
Microelectronic Circuits
, 5th ed.,
Oxford University Press
,
New York
.
35.
Dede
,
E. M.
,
Schmalenberg
,
P.
,
Nomura
,
T.
, and
Ishigaki
,
M.
,
2015
, “
Design of Anisotropic Thermal Conductivity in Multilayer Printed Circuit Boards
,”
IEEE Compon. Packag. Manuf. Technol.
,
5
(
12
), pp.
1763
1774
.
36.
Lohan
,
D. J.
,
Dede
,
E. M.
, and
Allison
,
J. T.
,
2016
, “
Topology Optimization Formulations for Circuit Board Heat Spreader Design.
,”
AIAA
Paper No. AIAA 2016-3669.
37.
COMSOL AB
,
2015
, “
COMSOL Multiphysics ver. 5.2
,” COMSOL AB, Stockholm, Sweden.
38.
Rojas-Labanda
,
S.
, and
Stolpe
,
M.
,
2015
, “
Benchmarking Optimization Solvers for Structural Topology Optimization
,”
Struct. Multidisc. Optim.
,
52
(
3
), pp.
527
547
.
39.
Soprani
,
S.
,
Haertel
,
J. H. K.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2016
, “
A Design Approach for Integrating Thermoelectric Devices Using Topology Optimization
,”
Appl. Energy
,
176
, pp.
49
64
.
40.
Dede
,
E. M.
,
Joshi
,
S.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
41.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.
42.
Materialise NV
,
2015
, “
Mimics Research 18.0
,” Materialise NV, Leuven, Belgium.
43.
Bergquist—Thermal Materials
,
2018
, “(Gap Pad VO Soft On the WWW,” Henkel Electronics Materials, LLC, Chanhassen, MN, accessed Sept. 19, 2018, http://www.bergquistcompany.com/thermal_materials/gap_pad/gap-pad-VOSoft_properties.htm
44.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,”
11th IEEE ITHERM Conference
, Orlando, FL, May 28–31, pp. 395–404.
45.
Gerstler
,
W. D.
, and
Erno
,
D.
,
2017
, “
Introduction of an Additively Manufactured Multi-Furcating Heat Exchanger
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp.
624
633
.
46.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
47.
Marian—Material Data Sheets,
2017
, “Nov. Thermal Gap Filler Material On the WWW,” Marian Inc., Indianapolis, IN, accessed Sept. 19, 2018, http://www.marianinc.com/wp-content/uploads/2016/07/PS-1917-17W-hyper-soft-gap-filler.pdf
You do not currently have access to this content.