Abstract

In this paper, the performances of a novel hybrid solar system using the Al2O3 nanofluid and pure water as a heat transfer fluid to operate a single-effect lithium bromide absorption chiller are investigated. In which the performance of the proposed system using the nanofluid during winter and summer under mixed and forced convection is evaluated. Thus, the performances of the solar collector are investigated experimentally, and the output performances of the water–LiBr absorption chiller system are conducted numerically using matlab platform. The results show that the obtained Reynolds number of the heat transfer fluid is laminar flow in summer with the maximum values of 1700 and 1600 for nanofluid and water, respectively, and the maximum values of 2200 and 2100 for nanofluid and pure water, respectively, in winter. The proposed hybrid system achieves approximately 54% and 36% of maximum thermal efficiency during the winter and the summer, respectively. The obtained performance shows that the absorption cycle at positive evaporation temperatures is very appreciable using the nanofluid as working fluid during both seasons and quite satisfactory using the water during summer and winter seasons. Overall, the proposed system has potential for further development in the solar cooling system.

References

1.
Prasad
,
A. R.
,
Shankar
,
R.
,
Patil
,
C. K.
,
Karthick
,
A.
,
Kumar
,
A.
, and
Rahim
,
R.
,
2021
, “
Performance Enhancement of Solar Photovoltaic System for Roof Top Garden
,”
Environ. Sci. Pollut. Res.
,
28
(
36
), pp.
50017
50027
.
2.
Lekbir
,
A.
,
Hassani
,
S.
,
Ab Ghani
,
M. R.
,
Gan
,
C. K.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2018
, “
Improved Energy Conversion Performance of a Novel Design of Concentrated Photovoltaic System Combined With Thermoelectric Generator With Advance Cooling
,”
Energy Convers. Manage.
,
177
(
23
), pp.
19
29
.
3.
Lekbir
,
A.
,
Hassani
,
S.
,
Mekhilef
,
S.
,
Ruddin
,
M.
,
Ghani
,
A.
, and
Gan
,
C. K.
,
2021
, “
Energy Performance Investigation of Nanofluid-Based Concentrated Photovoltaic/Thermal-Thermoelectric Generator Hybrid System
,”
Int. J. Energy Res.
,
45
(
5
), pp.
1
19
.
4.
Al-Waeli
,
A. H. A.
,
Kazem
,
H. A.
,
Chaichan
,
M. T.
, and
Sopian
,
K.
,
2019
, “PV/T Principles and Design,”
Photovoltaic/Thermal (PV/T) Systems: Principles, Design, and Applications
,
Springer International Publishing
,
Cham
, pp.
65
123
.
5.
Koech
,
R. K.
,
Ondieki
,
H. O.
,
Tonui
,
J. K.
, and
Rotich
,
S. K.
,
2012
, “
A Steady State Thermal Model for Photovoltaic/Thermal (PV/T) System Under Various Conditions
,”
Int. J. Sci. Technol. Res.
,
1
(
11
), pp.
1
5
.
6.
Hassani
,
S.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Taylor
,
R. A.
,
2016
, “
Environmental and Exergy Benefit of Nanofluid-Based Hybrid PV/T Systems
,”
Energy Convers. Manage.
,
123
(
17
), pp.
431
444
.
7.
Ahmadi
,
A.
,
Ehyaei
,
M. A.
,
Doustgani
,
A.
,
Assad
,
M. E. H.
,
Hmida
,
A.
,
Jamali
,
D. H.
,
Kumar
,
R.
,
Li
,
Z. X.
, and
Razmjoo
,
A.
,
2021
, “
Recent Residential Applications of Low-Temperature Solar Collector
,”
J. Clean. Prod.
,
279
(
2
), p.
123549
.
8.
Malan
,
A.
, and
Ravi Kumar
,
K.
,
2021
, “
A Comprehensive Review on Optical Analysis of Parabolic Trough Solar Collector
,”
Sustain. Energy Technol. Assess.
,
46
(
4
), p.
101305
.
9.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renew. Energy
,
39
(
1
), pp.
293
298
.
10.
Lu
,
L.
,
Liu
,
Z. H.
, and
Xiao
,
H. S.
,
2011
, “
Thermal Performance of an Open Thermosyphon Using Nanofluids for High-Temperature Evacuated Tubular Solar Collectors. Part 1: Indoor Experiment
,”
Sol. Energy
,
85
(
2
), pp.
379
387
.
11.
Mahendran
,
M.
,
Ali
,
T. Z. S.
,
Shahrani
,
A.
, and
Bakar
,
R. A.
,
2014
, “
The Efficiency Enhancement on the Direct Flow Evacuated Tube Solar Collector Using Water-Based Titanium Oxide Nanofluids
,”
Appl. Mech. Mater.
,
465–466
(
7
), pp.
308
315
. www.scientific.net/amm.465-466.308
12.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2019
, “
Efficiency of Evacuated Tube Solar Collector Using WO3/Water Nanofluid
,”
Renew. Energy
,
134
(
5
), pp.
453
460
.
13.
Butt
,
I. B.
,
Tan
,
J.
,
Waqas
,
A.
,
Ali
,
M.
,
Javed
,
A.
, and
Ali
,
A. Y.
,
2020
, “
Effect of Modified Flow Schemes of Heat Transfer Fluid on the Performance of a Solar Absorption-Cooling System for an Educational Building in Pakistan
,”
Appl. Sci.
,
10
(
9
), pp.
1
17
.
14.
Redko
,
A.
,
Redko
,
O.
, and
DiPippo
,
R.
,
2020
, “Principles and Operation of Refrigeration and Heat Pump Systems,”
Low-Temperature Energy Systems With Applications of Renewable
,
Elsevier Science Publishing
,
New York
, pp.
1
45
.
15.
Chen
,
J. F.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2017
, “
Experimental and Analytical Study on an Air-Cooled Single Effect LiBr-H2O Absorption Chiller Driven by Evacuated Glass Tube Solar Collector for Cooling Application in Residential Buildings
,”
Sol. Energy
,
151
(
16
), pp.
110
118
.
16.
Marc
,
O.
,
Sinama
,
F.
,
Praene
,
J. P.
,
Lucas
,
F.
, and
Castaing-Lasvignottes
,
J.
,
2015
, “
Dynamic Modeling and Experimental Validation Elements of a 30 kW LiBr/H2O Single Effect Absorption Chiller for Solar Application
,”
Appl. Therm. Eng.
,
90
(
11
), pp.
980
993
.
17.
Tsoutsos
,
T.
,
Aloumpi
,
E.
,
Gkouskos
,
Z.
, and
Karagiorgas
,
M.
,
2010
, “
Design of a Solar Absorption Cooling System in a Greek Hospital
,”
Energy Build.
,
42
(
2
), pp.
265
272
.
18.
Monné
,
C.
,
Alonso
,
S.
,
Palacín
,
F.
, and
Serra
,
L.
,
2011
, “
Monitoring and Simulation of an Existing Solar Powered Absorption Cooling System in Zaragoza (Spain)
,”
Appl. Therm. Eng.
,
31
(
1
), pp.
28
35
.
19.
Gomri
,
R.
,
2010
, “
Investigation of the Potential of Application of Single Effect and Multiple Effect Absorption Cooling Systems
,”
Energy Convers. Manage.
,
51
(
8
), pp.
1629
1636
.
20.
Sarabia Escriva
,
E. J.
,
Lamas Sivila
,
E. V.
, and
Soto Frances
,
V. M.
,
2011
, “
Air Conditioning Production by a Single Effect Absorption Cooling Machine Directly Coupled to a Solar Collector Field. Application to Spanish Climates
,”
Sol. Energy
,
85
(
9
), pp.
2108
2121
.
21.
Buonomo
,
B.
,
Cascetta
,
F.
,
Cirillo
,
L.
, and
Nardini
,
S.
,
2018
, “
Application of Nanofluids in Solar Cooling System: Dynamic Simulation by Means of TRNSYS Software
,”
Model. Meas. Control B
,
87
(
3
), pp.
143
150
.
22.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Performance Analysis and Optimization of an Absorption Chiller Driven by Nanofluid Based Solar Flat Plate Collector
,”
J. Clean. Prod.
,
174
(
6
), pp.
256
272
.
23.
Rejeb
,
O.
,
Ghenai
,
C.
, and
Bettayeb
,
M.
,
2020
, “
Modeling and Simulation Analysis of Solar Absorption Chiller Driven by Nanofluid-Based Parabolic Trough Collectors (PTC) Under Hot Climatic Conditions
,”
Case Stud. Therm. Eng.
,
19
(
3
), p.
100624
.
24.
Al-Ugla
,
A. A.
,
El-Shaarawi
,
M. A. I.
,
Said
,
S. A. M.
, and
Al-Qutub
,
A. M.
,
2016
, “
Techno-economic Analysis of Solar-Assisted Air-Conditioning Systems for Commercial Buildings in Saudi Arabia
,”
Renew. Sustain. Energy Rev.
,
54
(
3
), pp.
1301
1310
.
25.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2006
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
593
599
.
26.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), pp.
1
4
.
27.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
28.
Yadav
,
M.
, and
Saikhedkar
,
N. K.
,
2017
, “
Simulation Modelling for the Performance of Evacuated Tube Solar Collector
,”
Int. J. Innov. Res. Sci. Eng. Technol.
,
6
(
4
), pp.
5634
5642
.
29.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.
30.
Fakoor-Pakdaman
,
M.
,
Andisheh-Tadbir
,
M.
, and
Bahrami
,
M.
,
2014
, “
Unsteady Laminar Forced-Convective Tube Flow Under Dynamic Time-Dependent Heat Flux
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041706
.
31.
Kumar
,
A.
, and
Shukla
,
S. K.
,
2015
, “
A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application
,”
Energy Procedia
,
74
(
11
), pp.
462
469
.
32.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2018
, “
A Comprehensive Review of Thermal Energy Storage
,”
Sustainability
,
10
(
2
), p.
191
.
33.
Tzivanidis
,
C.
, and
Bellos
,
E.
,
2016
, “
The Use of Parabolic Trough Collectors for Solar Cooling—A Case Study for Athens Climate
,”
Case Stud. Therm. Eng.
,
8
(
2
), pp.
403
413
.
34.
Ren
,
J.
,
Qian
,
Z.
,
Yao
,
Z.
,
Gan
,
N.
, and
Zhang
,
Y.
,
2019
, “
Thermodynamic Evaluation of LiCl-H2O and LiBr-H2O Absorption Refrigeration Systems Based on a Novel Model and Algorithm
,”
Energies
,
12
(
15
), p.
3037
.
35.
Sharifi
,
S.
,
Nozad Heravi
,
F.
,
Shirmohammadi
,
R.
,
Ghasempour
,
R.
,
Petrakopoulou
,
F.
, and
Romeo
,
L. M.
,
2020
, “
Comprehensive Thermodynamic and Operational Optimization of a Solar-Assisted LiBr/Water Absorption Refrigeration System
,”
Energy Rep.
,
6
(
10
), pp.
2309
2323
.
36.
Misra
,
R. D.
,
Sahoo
,
P. K.
,
Sahoo
,
S.
, and
Gupta
,
A.
,
2003
, “
Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
26
(
2
), pp.
158
169
.
37.
Shashi Menon
,
E.
,
2015
,
Transmission Pipeline Calculations and Simulations Manual
,
Elsevier Science Publishing, Inc.
,
New York
, pp.
149
234
.
38.
Greco
,
A.
,
Gundabattini
,
E.
,
Gnanaraj
,
D. S.
, and
Masselli
,
C.
,
2020
, “
A Comparative Study on the Performances of Flat Plate and Evacuated Tube Collectors Deployable in Domestic Solar Water Heating Systems in Different Climate Areas
,”
Climate
,
8
(
6
), pp.
78
98
.
You do not currently have access to this content.