Phase change heat transfer in porous media finds applications in various geological flows and modern heat pipes. We present a study to show the effect of phase change on heat transfer in a porous channel. We show that the ratio of Jakob numbers based on wall superheat and inlet fluid subcooling governs the liquid–vapor interface location in the porous channel and below a critical value of the ratio, the liquid penetrates all the way to the extent of the channel in the flow direction. In such cases, the Nusselt number is higher due to the proximity of the liquid–vapor interface to the heat loads. For higher heat loads or lower subcooling of the liquid, the liquid–vapor interface is pushed toward the inlet, and heat transfer occurs through a wider vapor region thus resulting in a lower Nusselt number. This study is relevant in the designing of efficient two-phase heat exchangers such as capillary suction based heat pipes where a prior estimation of the interface location for the maximum heat load is required to ensure that the liquid–vapor interface is always inside the porous block for its operation.

References

1.
Lasance
,
C. M.
,
1997
, “
Advances in High-Performance Cooling for Electronics
,”
Electron. Cool.
,
11
(
4
), pp.
22
39
.
2.
Incropera
,
F. P.
,
1988
, “
Convection Heat Transfer in Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
110
, pp.
1097
1111
.10.1115/1.3250613
3.
Pamula
,
V.
, and
Chakrabarty
,
K.
,
2003
, “
Cooling of Integrated Circuits Using Droplet-Based Microfluidics
,”
ACM
Great Lakes Symposium on VLSI
, pp.
84
87
.10.1145/764825.764831
4.
Lee
,
D.
, and
Vafai
,
K.
,
1999
, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1555
1568
.10.1016/S0017-9310(98)00265-8
5.
Mohapatra
,
S.
, and
Loikitis
,
D.
,
2005
, “
Advances in Liquid Coolant Technologies for Electronics Cooling
,”
21st SemiTherm Symposium
, Mar. 15–17, pp.
354
360
.10.1109/STHERM.2005.1412204
6.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
,
2001
, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
931
938
.10.1016/S0017-9310(00)00155-1
7.
North
,
M. T.
, and
Cho
,
W.-L.
,
2003
, “
High Heat Flux Liquid-Cooled Porous Metal Heat Sink
,”
ASME
Paper No. IPACK2003-35320.10.1115/IPACK2003-35320
8.
Ko
,
K.-H.
,
2004
, “
Heat Transfer Enhancement in a Channel With Porous Baffles
,” Ph.D. thesis, Texas A&M University, College Station, TX.
9.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
1
19
.10.1016/j.applthermaleng.2003.12.004
10.
Wang
,
G.
,
Mishkinis
,
D.
, and
Nikanpour
,
D.
,
2008
, “
Capillary Heat Loop Technology: Space Applications and Recent Canadian Activities
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
284
303
.10.1016/j.applthermaleng.2006.02.027
11.
Figus
,
C.
,
Bray
,
Y. L.
,
Bories
,
S.
, and
Prat
,
M.
,
1999
, “
Heat and Mass Transfer With Phase Change in a Porous Structure Partially Heated: Continuum Model and Pore Network Simulations
,”
Int. J. Heat Mass Transfer
,
42
(
14
), pp.
2557
2569
.10.1016/S0017-9310(98)00342-1
12.
Demidov
,
A. S.
, and
Yatsenko
,
E. S.
,
1994
, “
Investigation of Heat and Mass Transfer in the Evaporation Zone of a Heat Pipe Operating by the ‘Inverted Meniscus’ Principle
,”
Int. J. Heat Mass Transfer
,
37
(
14
), pp.
2155
2163
.10.1016/0017-9310(94)90317-4
13.
Meakin
,
P.
, and
Xu
,
Z.
,
2008
, “
Disspative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media
,”
6th International Conference on CFD in Oil and Gas
, Metallurgical and Process Industries, Paper No. CFD08-52.
14.
Liu
,
M.
,
Meakin
,
P.
, and
Huang
,
H.
,
2006
, “
Dissipative Particle Dynamics With Attractive and Repulsive Particle–Particle Interactions
,”
Phys. Fluids
,
18
(
1
), p.
017101
.10.1063/1.2163366
15.
Carciofi
,
B. A. M.
,
Prat
,
M.
, and
Laurindo
,
J. B.
,
2011
, “
Homogeneous Volume of Fluid Method for Simulating Imbibition in Porous Media Saturated by Gas
,”
Energy Fuels
,
25
(
5
), pp.
2267
2273
.10.1021/ef200233j
16.
Riaz
,
A.
, and
Tchelepi
,
H. A.
,
2006
, “
Numerical Simulations of Immiscible Two-Phase Flow in Porous Media
,”
Phys. Fluids
,
18
(
1
), p.
014104
.10.1063/1.2166388
17.
Aziz
,
K.
, and
Settari
,
A.
,
1979
,
Petroleum Reservoir Simulation
,
Applied Science Publishers
,
London
.
18.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical Experimental Investigation of Two Phase Flow During Boiling in Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1003
1016
.10.1016/j.ijheatmasstransfer.2007.05.025
19.
Buckley
,
S. E.
, and
Leverett
,
M. C.
,
1942
, “
Mechanisms of Fluid Displacements in Sands
,”
Trans. AIME
,
146
(
1
), pp.
107
116
.10.2118/942107-G
20.
Leveque
,
R. J.
,
2004
,
Finite-Volume Method for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511791253
21.
Bastian
,
P.
,
1999
, “
Numerical Computation of Multiphase Flows in Porous Media
,” Ph.D. thesis, Technischen Fakultät der Christian-Albrechts-Universität Kiel, Heidelberg, Germany.
22.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Dover Publications
,
Mineola, NY
.
23.
Chavent
,
G.
, and
Jaffre
,
J.
,
1978
,
Mathematical Models and Finite Elements for Reservoir Simulations
(Studies in Mathematics and Its Applications, Vol. 17),
Elsevier
,
Philadelphia, PA
.
24.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulations of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
, p.
013002
.10.5098/hmt.v1.1.3002
25.
Chavent
,
G.
,
1975
, “
A New Formulation of Diphysic Incompressible Flows in Porous Media
,”
Applications of Methods of Functional Analysis to Problem in Mechanics
,
Springer
,
Berlin, Germany
, pp.
258
270
.10.1007/BFb0088761
26.
Brinkman
,
H. C.
,
1947
, “
Calculation of the Viscous Force Extended by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
A1
, pp.
27
34
.
27.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.10.1016/0017-9310(81)90027-2
28.
Falgout
,
R.
,
Jones
,
J.
, and
Yang
,
U.
,
2006
, “
The Design and Implementation of Hypre: A Library of Parallel High Performance Preconditioners
,”
Numerical Solution of Partial Differential Equations on Parallel Computers
(Lecture Notes in Computational Science and Engineering, Vol. 51), A. Bruaset and A. Tveito, eds., Springer, Berlin, pp. 267–294.10.1007/3-540-31619-1_8
29.
Sazhenkov
,
S. A.
,
2008
, “
Studying the Darcy–Stefan Problem on Phase Transition in a Saturated Porous Soil
,”
ASME J. Appl. Mech. Tech. Phys.
,
49
(
4
), pp.
587
597
.10.1007/s10808-008-0076-5
You do not currently have access to this content.