This article reviews the progress, challenges and opportunities in heat transfer research as applied to high-temperature thermochemical systems that use high-flux solar irradiation as the source of process heat. Selected pertinent areas such as radiative spectroscopy and tomography-based heat and mass characterization of heterogeneous media, kinetics of high-temperature heterogeneous reactions, heat and mass transfer modeling of solar thermochemical systems, and thermal measurements in high-temperature systems are presented, with brief discussions of their methods and example results from selected applications.

References

1.
Fletcher
,
E. A.
,
2001
, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
,
123
(2), pp.
63
74
.10.1115/1.1349552
2.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energ. Combust. Sci.
,
29
, pp.
567
597
.10.1016/S0360-1285(03)00059-5
3.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
, Vol.
15
,
R. A.
Meiers
, ed.,
Academic Press
,
San Diego
, pp.
237
256
.
4.
Hirsch
,
D.
,
Epstein
,
M.
, and
Steinfeld
,
A.
,
2001
, “
The Solar Thermal Decarbonization of Natural Gas
,”
Int. J. Hyd. Energ.
,
26
, pp.
1023
1033
.10.1016/S0360-3199(01)00040-4
5.
Dahl
,
J. K.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Brütsch
,
F.
, and
Steinfeld
,
A.
,
2004
, “
Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor
,”
Ind. Eng. Chem. Res.
,
43
, pp.
5489
5495
.10.1021/ie030307h
6.
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2008
, “
Solar-Driven Coal Gasification in a Thermally Irradiated Packed-Bed Reactor
,”
Energ. Fuel.
,
22
, pp.
2043
2052
.10.1021/ef800027c
7.
Hathaway
,
B. J.
,
Davidson
,
J. H.
, and
Kittelson
,
D. B.
,
2011
, “
Solar Gasification of Biomass: Kinetics of Pyrolysis and Steam Gasification in Molten Salt
,”
ASME J. Sol. Energy Eng.
,
133
(2), p.
021011
.10.1115/1.4003680
8.
Tamaura
,
Y.
,
Kojima
,
M.
,
Hasegawa
,
N.
,
Tsuji
,
M.
,
Ehrensberger
,
K.
, and
Steinfeld
,
A.
,
1997
, “
Solar Energy Conversion Into H2 Energy Using Ferrites
,”
J. Phys. IV
,
7
, pp.
673
674
.10.1051/jp4:19971275
9.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production via a 2-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hyd. Energ.
,
27
, pp.
611
619
.10.1016/S0360-3199(01)00177-X
10.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
, pp.
735
739
.10.1002/cssc.200900138
11.
Alvani
,
C.
,
Bellusci
,
M.
, La Barbera, A.,
Padella
,
F.
,
Pentimalli
,
M.
,
Seralessandri
,
L.
, and
Varsano
,
F.
,
2009
, “
Reactive Pellets for Improved Solar Hydrogen Production Based on Sodium Manganese Ferrite Thermochemical Cycle
,”
ASME J. Sol. Energy Eng.
,
131
(3), p.
031015
.10.1115/1.3142723
12.
Fresno
,
F.
,
Yoshida
,
T.
,
Gokon
,
N.
,
Fernandez-Saavedra
,
R.
, and
Kodama
,
T.
,
2010
, “
Comparative Study of the Activity of Nickel Ferrites for Solar Hydrogen Production by Two-Step Thermochemical Cycles
,”
Int. J. Hyd. Energ.
,
35
, pp.
8503
8510
.10.1016/j.ijhydene.2010.05.032
13.
Kogan
,
A.
,
2000
, “
Direct Solar Thermal Splitting of Water and On-Site Separation of the Products—IV. Development of Porous Ceramic Membranes for a Solar Thermal Water-Splitting Reactor
,”
Int. J. Hyd. Energ.
,
25
, pp.
1043
1050
.10.1016/S0360-3199(00)00024-0
14.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
,
Lipiński
,
W.
, and
Wuillemin
,
D.
,
2006
, “
Solar Chemical Reactor Technology for Industrial Production of Lime
,”
Solar Energ.
,
80
, pp.
1355
1362
.10.1016/j.solener.2005.05.017
15.
Gálvez
,
M. E.
,
Halmann
,
M.
, and
Steinfeld
,
A.
,
2007
, “
Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses
,”
Ind. Eng. Chem. Res.
,
46
, pp.
2042
2046
.10.1021/ie061550u
16.
Schaffner
,
B.
,
Hoffelner
,
W.
, and
Steinfeld
,
A.
,
2000
, “
Recycling of Hazardous Solid Waste Material Using High-Temperature Solar Process Heat. 1. Thermodynamic Analysis
,”
Environ. Sci. Tech.
,
34
, pp.
4177
4184
.10.1021/es0000495
17.
Matthews
,
L.
, and
Lipiński
,
W.
,
2012
, “
Thermodynamic Analysis of Solar Thermochemical CO2 Capture via Carbonation/Calcination Cycle With Heat Recovery
,”
Energy
,
45
, pp.
900
907
.10.1016/j.energy.2012.06.072
18.
Palumbo
,
R.
,
Keunecke
,
M.
,
Möller
,
S.
, and
Steinfeld
,
A.
,
2004
, “
Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation
,”
Energy
,
29
, pp.
727
744
.10.1016/S0360-5442(03)00180-4
19.
Mischler
,
D.
, and
Steinfeld
,
A.
,
1995
, “
Nonisothermal Nongray Absorbing-Emitting-Scattering Suspension of Fe3O4 Particles Under Concentrated Solar Irradiation
,”
ASME J. Heat Transfer
,
117
(2), pp.
346
354
.10.1115/1.2822528
20.
Von Zedtwitz
,
P.
, and
Steinfeld
,
A.
,
2005
, “
Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation—Modeling and Experimental Validation
,”
Ind. Eng. Chem. Res.
,
44
, pp.
3852
3861
.10.1021/ie050138w
21.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
, pp.
502
508
.10.1016/j.cej.2009.03.012
22.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
, pp.
1797
1801
.10.1126/science.1197834
23.
Wyss
,
J.
,
Martinek
,
J.
,
Kerins
,
M.
,
Dahl
,
J. K.
,
Weimer
,
A.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
2007
, “
Rapid Solar-Thermal Decarbonization of Methane in a Fluid-Wall Aerosol Flow Reactor: Fundamentals and Application
,”
Int. J. Chem. React. Eng.
,
5
, p.
A69
.10.2202/1542-6580.1311
24.
Kaviany
,
M.
,
2008
,
Heat Transfer Physics
,
Cambridge University Press
,
Cambridge
.
25.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
26.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford
.
27.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
28.
Petkovich
,
N. D.
,
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1−xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem.
,
115
, pp.
21022
21033
.10.1021/jp2071315
29.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2011
, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media
,”
Int. J. Heat Mass Tran.
,
54
, pp.
4775
4783
.10.1016/j.ijheatmasstransfer.2011.06.017
30.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2012
, “
Tomography-Based Characterization and Optimization of Fluid Flow Through Porous Media
,”
Transp. Porous Med.
,
95
, pp.
535
550
.10.1007/s11242-012-0060-7
31.
Norton
,
W. H.
,
1993
,
The Norton History of Chemistry
,
W.W. Norton
,
New York
.
32.
Trombe
,
F.
, and
Foex
,
M.
,
1951
, “
Essai de Metallurgie du Chrome par l'Hydrogene au Four Solaire
,”
Rev. Metall.
,
48
, pp.
359
362
.
33.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Solar Energ.
,
19
, pp.
467
475
.10.1016/0038-092X(77)90102-5
34.
Fletcher
,
E. A.
, and
Moen
,
R. L.
,
1977
, “
Hydrogen and Oxygen From Water
,”
Science
,
197
, pp.
1050
1056
.10.1126/science.197.4308.1050
35.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
,
Amsterdam
.
36.
Haussener
,
S.
,
Lipiński
,
W.
,
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Tomographic Characterization of a Semitransparent-Particle Packed Bed and Determination of Its Thermal Radiative Properties
,”
ASME J. Heat Transfer
,
131
(7), p.
072701
.10.1115/1.3109261
37.
Lipiński
,
W.
,
Petrasch
,
J.
, and
Haussener
,
S.
,
2010
, “
Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media
,”
J. Quant. Spectrosc. Rad. T.
,
111
, pp.
253
258
.10.1016/j.jqsrt.2009.08.001
38.
Lipiński
,
W.
,
Keene
,
D.
,
Haussener
,
S.
, and
Petrasch
,
J.
,
2010
, “
Continuum Radiative Heat Transfer Modeling in Media Consisting of Optically Distinct Components in the Limit of Geometrical Optics
,”
J. Quant. Spectrosc. Rad. T.
,
111
, pp.
2474
2480
.10.1016/j.jqsrt.2010.06.022
39.
Baillis
,
D.
, and
Sacadura
,
J.-F.
,
2000
, “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Rad. T.
,
67
, pp.
327
363
.10.1016/S0022-4073(99)00234-4
40.
Agarwal
,
B. M.
, and
Mengüç
,
M.
,
1991
, “
Forward and Inverse Analysis of Single and Multiple Scattering of Collimated Radiation in an Axisymmetric System
,”
Int. J. Heat Mass Tran.
,
34
, pp.
633
647
.10.1016/0017-9310(91)90112-R
41.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
,
2004
, “
Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
,
126
(1), pp.
633
637
.10.1115/1.1639001
42.
Osinga
,
T.
,
Lipiński
,
W.
,
Guilot
,
E.
,
Olalde
,
G.
, and
Steinfeld
,
A.
,
2006
, “
Experimental Determination of the Extinction Coefficient for a Packed-Bed Particulate Medium
,”
Exp. Heat Trans.
,
19
, pp.
69
79
.10.1080/08916150500318398
43.
Lipiński
,
W.
,
Guillot
,
E.
,
Olalde
,
G.
, and
Steinfeld
,
A.
,
2008
, “
Transmittance Enhancement of Packed-Bed Particulate Media
,”
Exp. Heat Trans.
,
21
, pp.
73
82
.10.1080/08916150701647843
44.
Jäger
,
K.
,
Lipiński
,
W.
,
Katzgraber
,
H. G.
, and
Steinfeld
,
A.
,
2009
, “
Determination of Thermal Radiative Properties of Packed-Bed Media Containing a Mixture of Polydispersed Particles
,”
Int. J. Therm. Sci.
,
48
, pp.
1510
1516
.10.1016/j.ijthermalsci.2008.12.006
45.
Coray
,
P.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2011
, “
Spectroscopic Goniometry System for Determining Thermal Radiative Properties of Participating Media
,”
Exp. Heat Trans.
,
24
, pp.
300
312
.10.1080/08916152.2011.556311
46.
Coray
,
P.
,
Petrasch
,
J.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2007
, “
Determination of Radiative Characteristics of Reticulate Porous Ceramics
,”
M. P.
Mengüç
, and
N.
Selçuk
, eds.,
Proceedings of the 5th International Symposium on Radiative Transfer RAD-V
,
Bodrum, Turkey
, June 17–22.
47.
Coray
,
P.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2010
, “
Experimental and Numerical Determination of Thermal Radiative Properties of ZnO Particulate Media
,”
ASME J. Heat Transfer
,
132
(1), p.
012701
.10.1115/1.3194763
48.
Liang
,
Z.
,
Chueh
,
W. C.
,
Ganesan
,
K.
,
Haile
,
S. M.
, and
Lipiński
,
W.
,
2011
, “
Experimental Determination of Transmittance of Porous Cerium Dioxide Media in the Spectral Range 300–1,100 nm
,”
Exp. Heat Trans.
,
24
, pp.
285
299
.10.1080/08916152.2010.542876
49.
Ganesan
,
K.
, and
Lipiński
,
W.
,
2011
, “
Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900–1700 nm
,”
ASME J. Heat Transfer
,
133
(10), p.
104501
.10.1115/1.4003970
50.
Dombrovsky
,
L.
,
Ganesan
,
K.
, and
Lipiński
,
W.
,
2012
, “
Combined Two-Flux Approximation and Monte Carlo Model for Identification of Radiative Properties of Highly Scattering Dispersed Materials
,”
Comput. Therm. Sci.
,
4
, pp.
365
378
.10.1615/ComputThermalScien.2012005025
51.
Ganesan
,
K.
,
Dombrovsky
,
L. A.
, and
Lipiński
,
W.
,
2013
, “
Visible and Near-Infrared Optical Properties of Ceria Ceramics
,”
Infrared Phys. Techn.
,
57
, pp.
101
109
.10.1016/j.infrared.2012.12.040
52.
Berryman
,
J.
, and
Blair
,
S.
,
1986
, “
Use of Digital Image Analysis to Estimate Fluid Permeability of Porous Material: Application of Two-Point Correlation Functions
,”
J. Appl. Phys.
,
60
, pp.
1930
1938
.10.1063/1.337245
53.
Rintoul
,
M.
,
Torquato
,
S.
,
Yeong
,
C.
,
Keane
,
D.
,
Erramilli
,
S.
,
Jun
,
Y.
,
Dabbs
,
D.
, and
Aksay
,
I.
,
1996
, “
Structure and Transport Properties of a Porous Magnetic Gel via X-ray Microtomography
,”
Phys. Rev. E
,
54
, pp.
2663
2669
.10.1103/PhysRevE.54.2663
54.
Tancrez
,
M.
, and
Taine
,
J.
,
2004
, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Tran.
,
47
, pp.
373
383
.10.1016/S0017-9310(03)00146-7
55.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
,
2006
, “
Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI)
,”
Int. J. Heat Mass Tran.
,
49
, pp.
2810
2819
.10.1016/j.ijheatmasstransfer.2006.02.034
56.
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2007
, “
Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics
,”
J. Quant. Spectrosc. Ra.
,
105
, pp.
180
197
.10.1016/j.jqsrt.2006.11.002
57.
Petrasch
,
J.
,
Wyss
,
P.
,
Stämpfli
,
R.
, and
Steinfeld
,
A.
,
2008
, “
Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
,
91
, pp.
2659
2665
.10.1111/j.1551-2916.2008.02308.x
58.
Petrasch
,
J.
,
Schrader
,
B.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2008
, “
Tomography-Based Determination of the Effective Thermal Conductivity of Reticulate Porous Ceramics
,”
ASME J. Heat Transfer
,
103
(3), p.
032602
.10.1115/1.2804932
59.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
,
2008
, “
Tomography Based Determination of Permeability, Dupuit–Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
,
29
, pp.
315
326
.10.1016/j.ijheatfluidflow.2007.09.001
60.
Haussener
,
S.
,
Coray
,
P.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2010
, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
132
(2), p.
023305
.10.1115/1.4000226
61.
Haussener
,
S.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2010
, “
Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation
,”
ASME J. Heat Transfer
,
132
(6), p.
061201
.10.1115/1.4000749
62.
Haussener
,
S.
,
Jerjen
,
I.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2012
, “
Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media
,”
ASME J. Heat Transfer
,
134
(1), p.
012601
.10.1115/1.4004842
63.
Haussener
,
S.
, and
Steinfeld
,
A.
,
2012
, “
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
,”
Materials
,
5
, pp.
192
209
.10.3390/ma5010192
64.
Abanades
,
S.
, and
Villafan-Vidales
,
H. I.
,
2011
, “
CO2 and H2O Conversion to Solar Fuels via Two-Step Solar Thermochemical Looping Using Iron Oxide Redox Pair
,”
Chem. Eng. J.
,
175
, pp.
368
375
10.1016/j.cej.2011.09.124
65.
Abanades
,
S.
, and
Le Gal
,
A.
,
2012
, “
CO2 Splitting by Thermo-Chemical Looping Based on ZrxCe1−xO2 Oxygen Carriers for Synthetic Fuel Generation
,”
Fuel
,
102
, pp.
180
186
.10.1016/j.fuel.2012.06.068
66.
Chiron
,
F.-X.
, and
Patience
,
G. S.
,
2012
, “
Kinetics of Mixed Copper–Iron Based Oxygen Carriers for Hydrogen Production by Chemical Looping Water Splitting
,”
Int. J. Hyd. Energ.
,
37
, pp.
10526
10538
.10.1016/j.ijhydene.2012.04.052
67.
Go
,
K. S.
,
Son
,
S. E.
, and
Kim
,
S. D.
,
2008
, “
Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydrogen Production
,”
Int. J. Hyd. Energ.
,
33
, pp.
5986
5995
.10.1016/j.ijhydene.2008.05.039
68.
Tabatabaie-Raissi
,
A.
,
Narayan
,
R.
,
Mok
,
W. S. L.
, and
Antal
,
J.
, Jr.
,
1989
, “
Solar Thermal, Decomposition Kinetics of Zinc Sulfate at High Heating Rates
,”
Indust. Eng. Chem. Res.
,
28
, pp.
355
362
.10.1021/ie00087a016
69.
Tabatabaie-Raissi
,
A.
,
Mok
,
W. S. L.
, and
Antal
,
J.
, Jr.
,
1989
, “
Cellulose Pyrolysis Kinetics in a Simulated Solar Environment
,”
Indust. Eng. Chem. Res.
,
28
, pp.
856
865
.10.1021/ie00090a031
70.
Schunk
,
L. O.
, and
Steinfeld
,
A.
,
2009
, “
Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800–2100 K Range
,”
AIChe J.
,
55
, pp.
1497
1504
.10.1002/aic.11765
71.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Tran.
,
52
, pp.
2444
2452
.10.1016/j.ijheatmasstransfer.2008.12.025
72.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,”
AIChE J.
,
55
, pp.
1659
1659
.10.1002/aic.11782
73.
Chen
,
S.
,
Shi
,
Q.
,
Xue
,
Z.
,
Sun
,
X.
, and
Xiang
,
W.
,
2011
, “
Experimental Investigation of Chemical-Looping Hydrogen Generation Using Al2O3 or TiO2-Supported Iron Oxides in a Batch Fluidized Bed
,”
Int. J. Hyd. Energ.
,
36
, pp.
8915
8926
.10.1016/j.ijhydene.2011.04.204
74.
Rydén
,
M.
, and
Arjmand
,
M.
,
2012
, “
Continuous Hydrogen Production via the Steam–Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor
,”
Int. J. Hyd. Energ.
,
37
, pp.
4843
4854
.10.1016/j.ijhydene.2011.12.037
75.
Singh
,
A.
,
Al-Raqom
,
F.
,
Klausner
,
J. F.
, and
Petrasch
,
J.
,
2012
, “
Production of Hydrogen via an Iron/Iron Oxide Looping Cycle: Thermodynamic Modeling and Experimental Validation
,”
Int. J. Hyd. Energ.
,
37
, pp.
7442
7450
.10.1016/j.ijhydene.2012.01.074
76.
Mehdizadeh
,
M. A.
,
Klausner
,
J. F.
,
Mei
,
R.
, and
Barde
,
A.
,
2012
, “
Enhancement of Thermochemical Hydrogen Production Using an Iron-Silica Magnetically Stabilized Porous Structure
,”
Int. J. Hyd. Energ.
,
37
, pp.
8954
8963
.10.1016/j.ijhydene.2012.02.189
77.
Mehdizadeh
,
A. M.
,
Klausner
,
J. F.
,
Barde
,
A.
,
Rahmatian
,
N.
, and
Mei
,
R.
,
2012
, “
Investigation of Hydrogen Production Reaction Kinetics for an Iron-Silica Magnetically Stabilized Porous Structure
,”
Int. J. Hyd. Energ.
,
37
, pp.
13263
13271
.10.1016/j.ijhydene.2012.07.035
78.
Stamatiou
,
A.
,
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production From H2O and CO2 Over Zn Particles in a Packed-Bed Reactor
,”
AIChE J.
,
58
, pp.
625
631
.10.1002/aic.12580
79.
Agrafiotis
,
C.
,
Roeb
,
C.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
,
2005
, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Solar Energ.
,
79
, pp.
409
421
.10.1016/j.solener.2005.02.026
80.
Roeb
,
M.
,
Neises
,
M.
,
Säck
,
J.-P.
,
Rietbrock
,
P.
,
Monnerie
,
N.
,
Dersch
,
J.
,
Schmitz
,
M.
, and
Sattler
,
C.
,
2009
, “
Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
,”
Int. J. Hyd. Energ.
,
34
, pp.
4537
4545
.10.1016/j.ijhydene.2008.08.049
81.
Roeb
,
M.
,
Säck
,
J.-P.
,
Rietbrock
,
P.
,
Prahl
,
C.
,
Schreiber
,
H.
,
Neises
,
M.
,
De Oliveira
,
L.
,
Graf
,
D.
,
Ebert
,
M.
,
Reinalter
,
W.
,
Meyer-Grünefeldt
,
M.
,
Sattler
,
C.
,
Lopez
,
A.
,
Vidal
,
A.
,
Elsberg
,
A.
,
Stobbe
,
P.
,
Jones
,
D.
,
Steele
,
A.
,
Lorentzou
,
S.
,
Pagkoura
,
C.
,
Zygogianni
,
Z.
,
Agrafiotis
,
C.
, and
Konstandopoulos
,
A. G.
,
2011
, “
Test Operation of a 100 kW Pilot Plant for Solar Hydrogen Production From Water on a Solar Tower
,”
Solar Energ.
,
85
, pp.
634
644
.10.1016/j.solener.2010.04.014
82.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energ. Environ. Sci.
,
5
, pp.
6098
6103
.10.1039/c1ee02620h
83.
Stehle
,
R. C.
,
Bobek
,
M. M.
,
Hooper
,
R.
, and
Hahn
,
D. W.
,
2011
, “
Oxidation Reaction Kinetics for the Steam-Iron Process in Support of Hydrogen Production
,”
Int. J. Hyd. Energ.
,
36
, pp.
15125
15135
.10.1016/j.ijhydene.2011.08.074
84.
Klausner
,
J. F.
,
Hahn
,
D. W.
,
Petrasch
,
J.
,
Mei
,
R.
,
Mehdizadeh
,
A. M.
,
Barde
,
A.
,
Allen
,
K.
,
Rahmatian
,
N.
,
Stehle
,
R. C.
,
Bobek
,
S. M.
,
Al-Raqom
,
F.
,
Greek
,
B.
,
Li
,
L.
,
Abhishek
,
S.
, and
Takagi
,
M.
,
2010
, “
Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D
,” DOE NETL Quarterly Report 6, Project DE-FE0001321.
85.
Hui
,
W.
,
Xiaoqiong
,
F.
,
Xiaofang
,
W.
,
Sanping
,
C.
, and
Shengli
,
G.
,
2008
, “
Hydrogen Production by Redox of Bimetal Cation-Modified Iron Oxide
,”
Int. J. Hyd. Energ.
,
33
, pp.
7122
7128
.10.1016/j.ijhydene.2008.09.017
86.
Kodama
,
T.
,
Imaizumi
,
N.
,
Gokon
,
N.
,
Hatamachi
,
T.
,
Aoyagi
,
D.
, and
Kondo
,
K.
,
2011
, “
Comparison Studies of Reactivity on Nickel-Ferrite and Cerium-Oxide Redox Materials for Two-Step Thermochemical Water Splitting Below 1400 °C
,” Proceedings of the
ASME
2011 5th International Conference on Energy Sustainability,
Washington, DC
, Aug. 7–10.10.1115/ES2011-54277
87.
Otsuka
,
K.
,
Kaburagi
,
T.
,
Yamada
,
C.
, and
Takenaka
,
S.
,
2003
, “
Chemical Storage of Hydrogen by Modified Iron Oxides
,”
J. Power Source.
,
122
, pp.
111
21
.10.1016/S0378-7753(03)00398-7
88.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
, Vol.
31
,
J. P.
Hartnett
,
T. F.
Irvine
, Jr.
,
Y. I.
Cho
, and
G. A.
Greene
, eds.,
Academic Press
,
New York
, pp.
333
429
.
89.
Chai
,
J. C.
, and
Patankar
,
S. V.
,
2000
, “
Finite-Volume Method for Radiation Heat Transfer
,”
Advances in Numerical Heat Transfer
, Vol.
2
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
New York
, pp.
109
141
.
90.
Martinek
,
J.
, and
Weimer
,
A. W.
,
2013
, “
Evaluation of Finite Volume Solutions for Radiative Heat Transfer in a Closed Cavity Solar Receiver for High Temperature Solar Thermal Processes
,”
Int. J. Heat Mass Tran.
,
58
, pp.
585
596
.10.1016/j.ijheatmasstransfer.2012.11.065
91.
Piatkowski
,
N.
,
Wieckert
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2011
, “
Solar-Driven Gasification of Carbonaceous Feedstock—A Review
,”
Energ. Environ. Sci.
,
4
, pp.
73
82
.10.1039/c0ee00312c
92.
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Two-Phase Reactor Model for the Steam-Gasification of Carbonaceous Materials Under Concentrated Thermal Radiation
,”
Chem. Eng. Process.
,
47
, pp.
655
662
.10.1016/j.cep.2006.12.003
93.
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Heat and Mass Transfer Analysis of a Suspension of Reacting Particles Subjected to Concentrated Solar Radiation—Application to the Steam-Gasification of Carbonaceous Materials
,”
Int. J. Heat Mass Tran.
,
52
, pp.
385
395
.10.1016/j.ijheatmasstransfer.2008.05.023
94.
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2005
, “
Transient Radiative Heat Transfer Within a Suspension of Coal Particles Undergoing Steam Gasification
,”
Heat Mass Transfer
,
41
, pp.
1021
1032
.10.1007/s00231-005-0654-5
95.
Lipiński
,
W.
,
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2005
, “
Transient Radiation Heat Transfer Within a Nongray Nonisothermal Absorbing-Emitting-Scattering Suspension of Reacting Particles Undergoing Shrinkage
,”
Numer. Heat Trans. B.
,
47
, pp.
443
457
.10.1080/10407790590928955
96.
von Zedtwitz
,
P.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2007
, “
Numerical and Experimental Study of Gas-Particle Radiative Heat Exchange in a Fluidized-Bed Reactor for Steam-Gasification of Coal
,”
Chem. Eng. Sci.
,
62
, pp.
599
607
.10.1016/j.ces.2006.09.027
97.
Melchior
,
T.
,
Perkins
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2008
, “
A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy
,”
Int. J. Therm. Sci.
,
47
, pp.
1496
1503
.10.1016/j.ijthermalsci.2007.12.003
98.
Melchior
,
T.
, and
Steinfeld
,
A.
,
2008
, “
Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers
,”
ASME J. Sol. Energy Eng.
,
130
(2), p.
021013
.10.1115/1.2888755
99.
Loutzenhiser
,
P.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Materials
,
3
, pp.
4922
4938
.10.3390/ma3114922
100.
Perkins
,
C.
, and
Weimer
,
A.
,
2008
, “
Computational Fluid Dynamics Simulation of a Tubular Aerosol Reactor for Solar Thermal ZnO Decomposition
,”
ASME J. Sol. Energy Eng.
,
129
(4), pp.
391
404
.10.1115/1.2769700
101.
Haussener
,
S.
,
Hirsch
,
D.
,
Perkins
,
C.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production
,”
ASME J. Sol. Energy Eng.
,
131
(2), p.
024503
.10.1115/1.3097280
102.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
,
2007
, “
Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation
,”
Chem. Eng. Sci.
,
62
, pp.
6323
6333
.10.1016/j.ces.2007.07.042
103.
Lipiński
,
W.
,
Thommen
,
D.
, and
Steinfeld
,
A.
,
2006
, “
Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation
,”
Chem. Eng. Sci.
,
61
, pp.
7029
7035
.10.1016/j.ces.2006.07.037
104.
Dombrovsky
,
L. A.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2007
, “
A Diffusion-Based Approximate Model for Radiation Heat Transfer in a Solar Thermochemical Reactor
,”
J. Quant. Spetrosc. Ra.
,
103
, pp.
601
610
.10.1016/j.jqsrt.2006.08.003
105.
Müller
,
R.
, and
Steinfeld
,
A.
,
2007
, “
Band-Approximated Radiative Heat Transfer Analysis of a Solar Chemical Reactor for the Thermal Dissociation of Zinc Oxide
,”
Solar Energ.
,
81
, pp.
1285
1294
.10.1016/j.solener.2006.12.006
106.
Müller
,
R.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2008
, “
Transient Heat Transfer in a Directly Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
,
28
, pp.
524
531
.10.1016/j.applthermaleng.2007.05.002
107.
Meier
,
A.
, and
Sattler
,
C.
,
2009
, “
Solar Fuels From Concentrated Sunlight
,” SolarPACES Report.
108.
Trombe
,
F.
, and
Vinh
,
A. L. P.
,
1973
, “
Thousand kW Solar Furnace, Built by the National Center of Scientific Research, in Odeillo (France)
,”
Solar Energ.
,
15
, pp. 57–61.10.1016/0038-092X(73)90006-6
109.
Hirsch
,
D.
,
Von Zedtwitz
,
P.
,
Osinga
,
T.
,
Kinamore
,
J.
, and
Steinfeld
,
A.
,
2003
, “
A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
125
(1), pp.
117
120
.10.1115/1.1528922
110.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(4), pp.
405
411
.10.1115/1.2769701
111.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(1), p.
011013
.10.1115/1.4003298
112.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Solar Energ. Eng.
(in press).
113.
Thalhammer
,
E.
,
1979
, “
Heliostat Beam Characterization System—-Update
Proceedings of the ISA/79 Conference
,
Chicago, IL
, pp.
505
521
.
114.
Strachan
,
J. W.
,
1992
, “
Revisiting the BCS, A Measurement System for Characterizing the Optics of Solar Collectors
,” Proceedings of the 39th International Symposium of Instrument Society of America.
115.
Kaluza, J., and Neumann, A.,
2001
, “
Comparative Measurements of Different Solar Flux Gauge Types
,”
ASME J. Sol. Energy Eng.
,
123
(
3
), pp.
251
255
.10.1115/1.1385201
116.
Ballestrín
,
J.
,
Ulmer
,
S.
,
Morales
,
A.
,
Barnes
,
A.
,
Langley
,
L. W.
, and
Rodríguez
,
M.
,
2003
, “
Systematic Error in the Measurement of Very High Solar Irradiance
,”
Sol. Energ. Mat. Sol. Cell.
,
80
, pp.
375
381
.10.1016/j.solmat.2003.08.014
117.
Ballestrín
,
J.
,
Rodríguez-Alonso
,
M.
,
Rodriguez
,
J.
,
Cañadas
,
I.
,
Barbero
,
F.
,
Langley
,
L. W.
, and
Barnes
,
A.
,
2006
, “
Calibration of High-Heat-Flux Sensors in a Solar Furnace
,”
Metrologia
,
43
, pp.
495
500
.10.1088/0026-1394/43/6/003
118.
Erickson
,
B.
, and
Petrasch
,
J.
,
2012
, “
Inverse Identification of Intensity Distributions From Multiple Flux Maps in Concentrating Solar Applications
,” Eurotherm Conference No. 95: Computational Thermal Radiation in Participating Media IV,
J. Phys. Conf. Ser.
,
369
, p.
012014
.10.1088/1742-6596/369/1/012014
119.
Z'Graggen
,
A.
,
Friess
,
H.
, and
Steinfeld
,
A.
,
2007
, “
Gas Temperature Measurement in Radiating Environments Using a Suction Thermocouple Apparatus
,”
Meas. Sci. Tech.
,
18
(
11
), pp.
3329
3334
.10.1088/0957-0233/18/11/010
120.
Lorenson
,
C.
,
1997
, “
Use of Imaging Pyrometry Sensor in Metallurgical Processes
,”
Sensors and Modeling in Materials Processing: Techniques and Applications, Proceedings of a Symposium on the Application of Sensors and Modeling to Materials Processing, 126th Annual Meeting of the Minerals, Metals, and Materials Society
, pp.
199
205
.
121.
Tschudi
,
H. R.
, and
Morian
,
G.
,
2001
, “
Pyrometric Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
,
123
(2), pp.
164
170
.10.1115/1.1355035
122.
Kerr
,
C.
, and
Ivey
,
P.
,
2004
, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sensor Rev.
,
24
, pp.
378
86
.10.1108/02602280410558412
123.
Rohner
,
N.
, and
Neumann
,
A.
,
2003
, “
Measurement of High Temperatures in the DLR Solar Furnace by UV-B Detection
,”
ASME J. Sol. Energy Eng.
,
125
(2), pp.
152
158
.10.1115/1.1562949
124.
Hernandez
,
D.
,
Olalde
,
G.
,
Gineste
,
J. M.
, and
Gueymard
,
C.
,
2004
, “
Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
,
126
(1), pp.
645
653
.10.1115/1.1636191
125.
Freid
,
A. P.
,
Johnson
,
P. K.
,
Musella
,
M.
,
Müller
,
R.
,
Steinbrenner
,
J. E.
, and
Palumbo
,
R. D.
,
2005
, “
Solar Blind Pyrometer Temperature Measurements in High Temperature Solar Thermal Reactors: A Method for Correcting the System-Sensor Cavity Reflection Error
,”
ASME J. Sol. Energy Eng.
,
127
(1), pp.
86
93
.10.1115/1.1796992
126.
Pfänder
,
M.
,
Lupfert
,
E.
, and
Heller
,
P.
,
2006
, “
Pyrometric Temperature Measurements on Solar Thermal High Temperature Receivers
,”
ASME J. Sol. Energy Eng.
,
128
(3), pp.
285
292
.10.1115/1.2210499
127.
Pfänder
,
M.
,
Hernandez
,
D.
,
Neumann
,
A.
,
Lüpfert
,
E.
,
Lipiński
,
W.
,
Tschudi
,
H.-R.
, and
Ballestrín
,
J.
,
2006
, “
Solar-Blind Pyrometric Temperature Measurements Under Concentrated Solar Radiation
,”
V.
Ruiz
,
D.
Martínez
,
M.
Silva
,
M.
Romero
, and
M.
Brown
, eds.,
Proceedings of the 13th SolarPACES International Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
Seville
, June 20–23.
128.
Smurov
,
I.
,
Doubenskaia
,
M.
, and
Bertrand
,
P.
,
2006
, “
Pyrometry in Laser Surface Treatment
,”
Surf. Coat. Tech.
,
201
, pp.
1955
1961
.10.1016/j.surfcoat.2006.04.060
129.
Muller
,
M.
,
Fabbro
,
R.
,
El-Rabii
,
H.
, and
Hirano
,
K.
,
2012
, “
Temperature Measurement of Laser Heated Metals in Highly Oxidizing Environment Using 2D Single-Band and Spectral Pyrometry
,”
J. Laser Appl.
,
24
, p.
022006
.10.2351/1.3701400
130.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1995
, “
Simultaneous Measurement of Irradiation, Temperature and Reflectivity on Hot Irradiated Surfaces
,”
Appl. Phys. A.
,
60
, pp.
581
587
.10.1007/BF01538532
131.
Schubnell
,
M.
,
Tschudi
,
H. R.
, and
Müller
,
C.
,
1996
, “
Temperature Measurement Under Concentrated Radiation
,”
Solar Energ.
,
58
, pp.
69
75
.10.1016/0038-092X(96)00038-2
132.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1999
, “
Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry
,”
Rev. Sci. Instrum.
,
70
, pp.
2719
2727
.10.1063/1.1149835
133.
Hernandez
,
D.
,
Ciaurriz
,
C.
, and
Olalde
,
G.
,
1991
, “
Détermination de l’émissivité à haute température à l'aide de systèmes à fibres optiques équipés d'hémisphères réflecteures
,”
J. Phys. III
,
1
, pp.
1575
1586
.10.1051/jp3:1991212
134.
Hernandez
,
D.
,
Olalde
,
G.
,
Beck
,
A.
, and
Milcent
,
E.
,
1995
, “
Bicolor Pyroreflectometer Using an Optical Fiber Probe
,”
Rev. Sci. Instrum.
,
66
, pp.
5548
5551
.10.1063/1.1146083
135.
Hernandez
,
D.
, and
Milcent
,
E.
,
1995
, “
Pyro-réflectomètre bicolore à fibres optiques pour mesures in situ
,”
J. Phys. III
,
5
, pp.
999
1011
.10.1051/jp3:1995173
136.
Crane
,
N. B.
,
2010
, “
Pyrometric Temperature Measurement in Concentrated Sunlight With Emissivity Determination
,”
ASME J. Sol. Energy Eng.
,
132
(1), p.
011007
.10.1115/1.4000351
137.
Alxneit
,
I.
,
2011
, “
Measuring Temperatures in a High Concentration Solar Simulator—Demonstration of the Principle
,”
Solar Energ.
,
85
, pp.
516
522
.10.1016/j.solener.2010.12.016
138.
Guesdon
,
C.
,
Alxneit
,
I.
,
Tschudi
,
H. R.
,
Wuillemin
,
D.
, and
Sturzenneger
,
M.
,
2006
, “
1 kW Imaging Furnace With In Situ Measurement of Surface Temperature
,”
Rev. Sci. Instrum.
,
77
, p.
035102
.10.1063/1.2173844
You do not currently have access to this content.