This study reports a high-performance heat spreader based on room-temperature liquid metal coolant. Conceptual cooling experiments show that liquid metal heat spreader owns particularly excellent heat spreading performance. In order to evaluate the driving features of liquid metal, a miniaturized electromagnetic pump with high reliability and low power consumption was fabricated and tested. Extreme experiments were performed and showed that liquid metal heat spreader could overwhelm all the latest typical advanced spreading technologies and serve as an ultimate heat spreading solution under extremely high heat flux density condition.

References

1.
Wu
,
Z. H.
, and
Du
,
R.
, 2010, “
Design and Experimental Study of a Miniature Vapor Compression Refrigeration System for Electronics Cooling
,”
Appl. Therm. Eng.
,
31
, pp.
385
390
.
2.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
, 2009, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
, pp.
235
238
.
3.
Chen
,
P. H.
,
Lin
,
C. L.
,
Liu
,
Y. K.
,
Chung
,
T. Y.
, and
Liu
,
C. Y.
, 2008, “
Diamond Heat Spreader Layer for High-Power Thin-GaN Light-Emitting Diodes
,”
IEEE Photon. Technol. Lett.
,
20
, pp.
845
847
.
4.
Horng
,
R. H.
,
Hsiao
,
H. Y.
,
Chiang
,
C. C.
,
Wuu
,
D. S.
,
Tsai
,
Y. L.
, and
Lin
,
H. I.
, 2009, “
Novel Device Design for High-Power InGaN/Sapphire LEDs Using Copper Heat Spreader With Reflector
,”
IEEE J. Sel. Top. Quantum Electron.
,
15
, pp.
1281
1286
.
5.
Kang
,
S. W.
,
Tsai
,
S. H.
, and
Ko
,
M. H.
, 2004, “
Metallic Micro Heat Pipe Heat Spreader Fabrication
,”
Appl. Therm. Eng.
,
24
, pp.
299
309
.
6.
Hsieh
,
S. S.
,
Lee
,
R. Y.
,
Shyu
,
J. C.
, and
Chen
,
S. W.
, 2008, “
Thermal Performance of Flat Vapor Chamber Heat Spreader
,”
Energy Convers. Manage.
,
49
, pp.
1774
1784
.
7.
Eng
,
P. F.
,
Nithiarasu
,
P.
, and
Guy
,
O. J.
, 2010, “
An Experimental Study on an Electro-Osmotic Flow-Based Silicon Heat Spreader
,”
Microfluid. Nanofluid.
,
9
, pp.
787
795
.
8.
Ma
,
K. Q.
, and
Liu
,
J.
, 2007, “
Liquid Metal Cooling in Thermal Management of Computer Chips
,”
Front. Energy Power Eng. China.
,
1
, pp.
384
402
.
9.
Ma
,
K. Q.
, and
Liu
,
J.
, 2007, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
, pp.
252
256
.
10.
Ghoshal
,
U.
,
Grimm
,
D.
,
Ibrani
,
S.
,
Johnston
,
C.
, and
Miner
,
A.
, 2005, “
High-Performance Liquid Metal Cooling Loops
,”
21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
IEEE
,
New York
, pp.
16
19
.
11.
Ghoshal
,
U.
, and
Miner
,
A.
, 2006, “
Cooling of Electronics by Electrically Conducting Fluids
,” U.S. Patent No. 7,131,286.
12.
Miner
,
A.
, and
Ghoshal
,
U.
, 2004, “
Cooling of High-Power-Density Microdevices Using Liquid Metal Coolants
,”
Appl. Phys. Lett.
,
85
, pp.
506
508
.
13.
Ma
,
K. Q.
, and
Liu
,
J.
, 2007, “
Heat-Driven Liquid Metal Cooling Device for the Thermal Management of a Computer Chip
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
4722
4729
.
14.
Sadeghi
,
E.
,
Bahrami
,
M.
, and
Djilali
,
N.
, 2010, “
Thermal Spreading Resistance of Arbitrary-Shape Heat Sources on a Half-Space: A Unified Approach
,”
IEEE Trans. Compon. Packag. Technol.
,
33
, pp.
267
277
.
15.
Morinigo
,
D.
,
Rodriguez
,
M. A.
,
Ivas
,
A.
,
Duque
,
O.
,
Vazquez
,
V.
,
Maroto
,
J. A.
, and
Cuesta
,
R.
, 2007, “
Experimental and Computational Investigation of an Electromagnetic Pump Used for Manufacturing Aluminum Parts
,”
Magnetohydrodynamics
,
43
, pp.
119
134
.
16.
Silverman
,
I.
,
Yarin
,
A. L.
,
Reznik
,
S. N.
,
Arenshtam
,
A.
,
Kijet
,
D.
, and
Nagler
,
A.
, 2006, “
High Heat-Flux Accelerator Targets: Cooling With Liquid Metal Jet Impingement
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2782
2792
.
17.
Ruch
,
P. W.
,
Beffort
,
O.
,
Kleiner
,
S.
,
Weber
,
L.
, and
Uggowitzer
,
P. J.
, 2006, “
Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity
,”
Compos. Sci. Technol.
,
66
, pp.
2677
2685
.
18.
Jagannadham
,
K.
,
Watkins
,
T. R.
, and
Dinwiddie
,
R. B.
, 2002, “
Novel Heat Spreader Coatings for High Power Electronic Devices
,”
J. Mater. Sci.
,
37
, pp.
1363
1376
.
You do not currently have access to this content.