Abstract

An oscillating heat pipe (OHP) charged with a hybrid fluid is investigated. This hybrid fluid uses an emulsion-based mixture of liquid metal gallium microdroplets suspended in an ethanol solution. The gallium microdroplets are fabricated using an ultrasonication technique. The OHP is fabricated from a copper plate and contains a six-turn channel with a 3 × 3 mm2 cross section. The heat transfer performance of the OHP was investigated experimentally with different concentrations of gallium at a 50% filling ratio. Steady-state oscillating motion was achieved with weight concentrations of gallium up to 20%. The experimental results show that using gallium-in-ethanol hybrid fluid emulsion as the working fluid can increase the heat transfer performance of the OHP by up to 7.8% over pure ethanol at 300 W. The mass of gallium needed to achieve this magnitude of heat transfer improvement is drastically reduced compared to previous research.

References

1.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
NY
.
2.
Akachi
,
H.
,
1990
, “
Structure of heat pipe
.” U.S Patent No. 4921041.
3.
Smoot
,
C.
, and
Ma
,
H.
,
2014
, “
Experimental Investigation of a Three-Layer Oscillating Heat Pipe
,”
ASME J. Heat Mass Trans.
,
136
(
5
), p.
051501
.
4.
Ma
,
H.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), pp.
1161
1163
.
5.
Cheng
,
P.
,
Thompson
,
S.
,
Boswell
,
J.
, and
Ma
,
H.
,
2010
, “
An Investigation of Flat-Plate Oscillating Heat Pipes
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041009
.
6.
Thompson
,
S.
,
Lu
,
H.
, and
Ma
,
H.
,
2015
, “
Thermal Spreading With a Flat-Plate Oscillating Heat Pipe
,”
AIAA J. Thermophys. Heat Transfer
,
29
(
2
), pp.
338
345
.
7.
Thompson
,
S.
,
Hathaway
,
A.
,
Smoot
,
C.
,
Wilson
,
C.
,
Ma
,
H.
,
Young
,
R.
,
Greenberg
,
L.
, et al
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Mass Trans.
,
133
(
10
), p.
104504
.
8.
Ji
,
Y.
,
Liu
,
G.
,
Ma
,
H.
,
Li
,
G.
, and
Sun
,
Y.
,
2013
, “
An Experimental Investigation of Heat Transfer Performance in a Polydimethylsiloxane (PDMS) Oscillating Heat Pipe
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
690
697
.
9.
Thompson
,
S.
,
Cheng
,
P.
, and
Ma
,
H.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.
10.
Thompson
,
S.
,
Ma
,
H.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
J. Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.
11.
Hathaway
,
A.
,
Wilson
,
C.
, and
Ma
,
H.
,
2012
, “
An Experimental Investigation of Uneven Turn Water and Acetone Oscillating Heat Pipes
,”
AIAA J. Heat Transfer Thermophys.
,
26
(
1
), pp.
115
122
.
12.
Chu
,
L.
,
Ji
,
Y.
,
Ma
,
H.
,
Li
,
Y.
,
Chang
,
C.
,
Yu
,
C.
, and
Wang
,
Z.
,
2020
, “
Experimental Study on Oscillating Heat Pipe With a Hydraulic Diameter Far Exceeding the Maximum Hydraulic Diameter
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
6
), p.
061009
.
13.
Hao
,
T.
,
Ma
,
H.
, and
Ma
,
X.
,
2019
, “
Experimental Investigation of a Three-Phase Oscillating Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061006
.
14.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
(
3
), pp.
224
233
.
15.
Hao
,
T.
,
Ma
,
H.
, and
Ma
,
X.
,
2019
, “
Experimental Investigation of Oscillating Heat Pipe With Hybrid Fluids of Liquid Metal and Water
,”
ASME J. Heat Mass Trans.
,
141
(
7
), p.
071802
.
16.
Hao
,
T.
,
Ma
,
H.
, and
Ma
,
X.
,
2019
, “
Heat Transfer Performance of Polytetrafluoroethylene Oscillating Heat Pipe With Water, Ethanol, and Acetone as Working Fluids
,”
Int. J. Heat Mass Transfer
,
131
(
3
), pp.
109
120
.
17.
Ma
,
H.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Mass Trans.
,
128
(
11
), pp.
1213
1216
.
18.
Ji
,
Y.
,
Wilson
,
C.
,
Chen
,
H.
, and
Ma
,
H.
,
2011
, “
Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Nanoscale Res. Lett.
,
6
(
296
), pp.
1
7
.
19.
Kumano
,
H.
,
Hiroi
,
K.
, and
Asaoka
,
T.
,
2017
, “
Experimental Study on Flow and Heat Transfer Characteristics of Oil/Water Emulsions: Part ii—Heat Transfer Characteristics
,”
Appl. Therm. Eng.
,
127
, pp.
1555
1563
.
20.
Trinh
,
V.
, and
Xu
,
J.
,
2017
, “
An Experimental Study on Flow and Heat Transfer Characteristics of Ethanol/Polyalphaolefin Nanoemulsion Flowing Through Circular Minichannels
,”
Nanoscale Res. Lett.
,
12
(
216
), pp.
1
11
.
21.
Vargaftik
,
N. B.
,
Yargin
,
V. S.
, and
Vinogradov
,
Y.
,
1975
,
Handbook of Physical Properties of Liquids and Gases
,
Hemisphere
,
NY
.
22.
Zhang
,
Y.
,
Tang
,
S.
,
Zhao
,
Q.
,
Yun
,
G.
,
Yuan
,
D.
, and
Li
,
W.
,
2019
, “
High-Throughput Production of Uniformly Sized Liquid Metal Microdroplets Using Submerged Electrodispersion
,”
Appl. Phys. Lett.
,
114
(
15
), p.
154101
.
23.
Hutter
,
T.
,
Elliott
,
S.
,
Huck
,
W.
, and
Bauer
,
W.
,
2012
, “
Formation of Spherical and Non-Spherical Eutectic Gallium-Indium Liquid-Metal Microdroplets in Microfluidic Channels at Room Temperature
,”
Adv. Funct. Mater.
,
22
(
12
), pp.
2624
2631
.
24.
Huang
,
C.
,
Zong
,
J.
,
Wang
,
X.
,
Cao
,
Q.
,
Zhang
,
D.
, and
Jiang
,
J.
, “
Production of Uniformly Sized Gallium-Based Liquid Alloy Nanodroplets via Ultrasonic Method and Their Li-Ion Storage
,”
Materials
,
14
(
7
), p.
1759
.
You do not currently have access to this content.