Abstract

A reduced-order model (ROM) is developed to capture conjugate aero-thermal physics of effusion cooling in an entire micro-turbine vane/blade. The model considers a single-wall effusion scheme with internal boundary layer flow between the shell and an inner core. Coolant is supplied inside the leading edge and spread to both suction and pressure sides. The compound effect of multiple effusion rows is used to calculate spanwise-averaged cooling effectiveness. Metal temperature is modeled both in streamwise and shell thickness directions. The development of the model and a number of numerical/experimental validation cases are presented in detail in Part I. Part II of the work is geared toward the application of this method to skin cooling of a turbine airfoil by single-wall effusion. The reduced-order model, with all its subroutines functioning together, is validated against a higher fidelity 3D Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) solution. It is shown that the model can predict the main features of the combined internal and effusion cooling in gas-turbine blades at a computational cost which is 105 times lower than RANS (∼1 month with 700M elements and 24 modern Xeon Cores) on a whole turbine vane/blade. Due to this great advantage in speed, a design optimization is then accomplished toward minimizing coolant flow rate while keeping thermal gradients and temperature of the solid within acceptable levels. Implementing this scheme on a typical micro-gas-turbine vane, optimal distributions of the effusion-hole pitch and diameter are found within a given set of constraints. This preliminary design tool potentially enables wider and more efficient usage of effusion cooling in turbine vanes/blades.

References

1.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX,
June 3–7
, pp.
1
17
.
2.
Polezhaev
,
J.
,
1997
, “
The Transpiration Cooling for Blades of High Temperatures Gas Turbine
,”
Energy Convers. Manage.
,
38
(
10–13
), pp.
13
10
.
3.
Eckert
,
E. R. G.
, and
Cho
,
H. H.
,
1994
, “
Transition From Transpiration to Film Cooling
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
3
8
.
4.
Selzer
,
B. M.
,
Schweikert
,
S.
,
Wolfersdorf
,
J.
, and
Hald
,
H.
,
2012
, “
Transpiration Cooling Models Applied to Rocket Combustion Chambers
,” SFB/TRR40 Annual Report 2012.
5.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.
6.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
7.
Ligrani
,
P.
,
Click
,
A.
,
Ritchie
,
D.
,
Liberatore
,
F.
,
Patel
,
R.
, and
Ho
,
Y. H.
,
2020
, “
Double Wall Cooling of an Effusion Plate With Cross Flow and Impingement Jet Combination Internal Cooling: Comparisons of Main Flow Contraction Ratio Effects
,”
Int. J. Heat Mass Transfer
,
150
, p.
119196
.
8.
Kim
,
M.
,
Shin
,
D. H.
,
Kim
,
J. S.
,
Lee
,
B. J.
, and
Lee
,
J.
,
2021
, “
Experimental Investigation of Effusion and Transpiration Air Cooling for Single Turbine Blade
,”
Appl. Therm. Eng.
,
182
, p.
116156
.
9.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC,
June 26–30
, pp.
1
12
.
10.
Ngetich
,
G. C.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
A Three-Dimensional Conjugate Approach for Analyzing a Double-Walled Effusion-Cooled Turbine Blade
,”
ASME J. Turbomach.
,
141
(
1
), p.
011002
.
11.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
12.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
13.
Murray
,
A. V.
,
Ireland
,
P. T.
,
Wong
,
T. H.
,
Tang
,
S. W.
, and
Rawlinson
,
A. J.
,
2017
, “
High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017
,
Stockholm, Sweden
,
Apr. 3–7
14.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, pp.
1
16
.
15.
Elmukashfi
,
E.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Cocks
,
A. C. F.
,
2020
, “
Analysis of the Thermomechanical Stresses in Double-Wall Effusion Cooled Systems
,”
ASME J. Turbomach.
,
142
(
5
), p.
051002
.
16.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
An Experimentally Validated Low Order Model of the Thermal Response of Double-Wall Effusion Cooling Systems for HP Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual
,
Sept. 21–25
, pp.
1
13
.
17.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Report 19830020105.
18.
Wlassow
,
F.
,
Duchaine
,
F.
,
Leroy
,
G.
, and
Gourdain
,
N.
,
2010
, “
3D Simulation of Coupled Fluid Flow and Solid Heat Conduction for the Calculation of Blade Wall Temperature in a Turbine Stage
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
1
12
.
19.
Bak
,
J. G.
,
Cho
,
J.
,
Lee
,
S.
, and
Kang
,
Y. S.
,
2016
, “
Effects of Inlet Turbulence Conditions and Near-Wall Treatment Methods on Heat Transfer Prediction Over Gas Turbine Vanes
,”
Int. J. Aeronaut. Space Sci.
,
17
(
1
), pp.
8
19
.
20.
Metzger
,
D. E.
,
Takeuchi
,
D. I.
, and
Keunstler
,
P. A.
,
1973
, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Power
,
95
(
3
), pp.
180
184
.
21.
Winka
,
J. R.
,
Anderson
,
J. B.
,
Boyd
,
E. J.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2014
, “
Convex Curvature Effects on Film Cooling Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
136
(
6
), p.
061015
.
22.
Mazur
,
Z.
,
Luna-Ramírez
,
A.
,
Juárez-Islas
,
J. A.
, and
Campos-Amezcua
,
A.
,
2005
, “
Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy
,”
Eng. Fail. Anal.
,
12
(
3
), pp.
474
486
.
23.
Sadowski
,
T.
, and
Golewski
,
P.
,
2011
, “
Multidisciplinary Analysis of the Operational Temperature Increase of Turbine Blades in Combustion Engines by Application of the Ceramic Thermal Barrier Coatings (TBC)
,”
Comput. Mater. Sci.
,
50
(
4
), pp.
1326
1335
.
24.
Hasan
,
M.
,
Zhao
,
J.
, and
Jiang
,
Z.
,
2017
, “
A Review of Modern Advancements in Micro Drilling Techniques
,”
J. Manuf. Process.
,
29
, pp.
343
375
.
25.
Imran
,
M.
,
Mativenga
,
P. T.
,
Gholinia
,
A.
, and
Withers
,
P. J.
,
2015
, “
Assessment of Surface Integrity of Ni Superalloy After Electrical-Discharge, Laser and Mechanical Micro-Drilling Processes
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
1303
1311
.
You do not currently have access to this content.