Abstract

With the development of the social economy, people’s demand for energy is increasing. As a kind of high energy consumption equipment in petrochemical enterprises, the heating furnace is imperative to reduce its energy consumption. Therefore, in order to further improve the thermal efficiency of the heating furnace and reduce the emission of pollutants, this paper combines the actual operation of the SRT-III heating furnace in the chemical plant to establish a fluid domain model. The effects of different values of excess air coefficient, air preheating temperature, and oxygen concentration on the flow field characteristics and furnace thermal efficiency under two kinds of blackness were analyzed by numerical simulation. The results show that higher blackness has higher furnace thermal efficiency. Under the conditions of a balance between thermal efficiency and environmental protection performance, the optimal values of excess air coefficient, air preheating temperature, and oxygen concentration are 1.20, 473 K, and 25%, respectively.

References

1.
Zakari
,
A.
,
Khan
,
I.
,
Tan
,
D.
,
Alvarado
,
R.
, and
Dagar
,
V.
,
2021
, “
Energy Efficiency and Sustainable Development Goals (SDGs)
,”
Energy
,
239
(
PE
), p.
122365
.
2.
Schoeneberger
,
C. A.
,
McMillan
,
C. A.
,
Kurup
,
P.
,
Akar
,
S.
,
Margolis
,
R.
, and
Masanet
,
E.
,
2020
, “
Solar for Industrial Process Heat: A Review of Technologies, Analysis Approaches, and Potential Applications in the United States
,”
Energy
,
206
, p.
118083
.
3.
Wei
,
X.
,
Huang
,
J.
,
Li
,
S.
,
Pan
,
L.
,
Chen
,
L.
,
Tan
,
H.
, and
Yang
,
F.
,
2021
, “
Research Progress and Development Direction of Energy Saving and Emission Reduction in the Combustion Process of Industrial Furnaces
,”
J. Therm. Sci. Technol.
,
20
(
01
), pp.
1
13
.
4.
Zhao
,
J.
,
Ma
,
L.
,
Zayed
,
M. E.
,
Elsheikh
,
A. H.
,
Li
,
W.
,
Yan
,
Q.
, and
Wang
,
J.
,
2021
, “
Industrial Reheating Furnaces: A Review of Energy Efficiency Assessments, Waste Heat Recovery Potentials, Heating Process Characteristics and Perspectives for Steel Industry
,”
Process Saf. Environ. Prot.
,
147
, pp.
1209
1228
.
5.
Thiyagu
,
S.
,
Naveen
,
T. K.
,
Siddharthan
,
B.
, and
Manirathnam
,
A. S.
,
2020
, “
Numerical Investigation and Performance Enhancement of 210 MW Boiler by Utilization of Waste Heat in Flue Gas
,”
Mater. Today: Proc.
,
33
(
P1
), pp.
756
762
.
6.
Wang
,
D.
,
Bao
,
A.
,
Kunc
,
W.
, and
Liss
,
W.
,
2012
, “
Coal Power Plant Flue Gas Waste Heat and Water Recovery
,”
Appl. Energy
,
91
(
1
), pp.
341
348
.
7.
Zhang
,
H.
,
Dong
,
Y.
,
Lai
,
Y.
,
Zhang
,
H.
, and
Zhang
,
X.
,
2021
, “
Waste Heat Recovery From Coal-Fired Boiler Flue Gas: Performance Optimization of a New Open Absorption Heat Pump
,”
Appl. Therm. Eng.
,
183
(
P1
), p.
116111
.
8.
Terhan
,
M.
, and
Comakli
,
K.
,
2016
, “
Design and Economic Analysis of a Flue Gas Condenser to Recover Latent Heat From Exhaust Flue Gas
,”
Appl. Therm. Eng.
,
100
, pp.
1007
1015
.
9.
Hadała
,
B.
,
Malinowski
,
Z.
, and
Rywotycki
,
M.
,
2017
, “
Energy Losses From the Furnace Chamber Walls During Heating and Heat Treatment of Heavy Forgings
,”
Energy
,
139
, pp.
298
314
.
10.
Mehta
,
N.
,
Patel
,
A.
,
Chudgar
,
C.
,
Marathe
,
H.
,
Macwan
,
S.
, and
Chakrabarti
,
P.
,
2020
, “
Comparison of Magnesia Ramming Mass and Zirconia for Refractory Wall of Induction Furnace
,”
Mater. Today: Proc.
.
(prepublish)
.
11.
Qi
,
G.
,
Liu
,
X.
,
Wang
,
Z.
,
Zhang
,
S.
,
Guan
,
J.
,
Liu
,
H.
, and
Qu
,
Z.
,
2020
, “
Numerical Simulation and Optimization of Heat-Insulation Material and Structure for CFB Boiler
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100692
.
12.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
,
1999
, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Thermal Sci. Eng. Appl.
,
121
(
3
), pp.
209
216
.
13.
Li
,
P.
,
Dally
,
B. B.
,
Mi
,
J.
, and
Wang
,
F.
,
2013
, “
MILD Oxy-Combustion of Gaseous Fuels in a Laboratory-Scale Furnace
,”
Combust. Flame
,
160
(
5
), pp.
933
946
.
14.
Xie
,
Y.
,
Tu
,
Y.
,
Jin
,
H.
,
Luan
,
C.
,
Wang
,
Z.
, and
Liu
,
H.
,
2019
, “
Numerical Study on a Novel Burner Designed to Improve MILD Combustion Behaviors at the Oxygen Enriched Condition
,”
Appl. Therm. Eng.
,
152
, pp.
686
696
.
15.
Du
,
W.
,
2020
, “
Effect Analysis of Improving Heating Furnace Thermal Efficiency
,”
Energy Conserv. Pet. Petrochem. Ind.
,
10
(
08
), pp.
35
37
.
16.
Peng
,
Y.
,
Shi
,
N.
,
Wang
,
T.
,
Wang
,
J.
,
Zhang
,
Y.
,
Chen
,
W.-Y.
,
Sajjadi
,
B.
, and
Pan
,
W.-P.
,
2021
, “
Investigating the Effect of Flue Gas Temperature and Excess Air Coefficient on the Size Distribution of Condensable Particulate Matters
,”
Fuel
,
298
, p.
120866
.
17.
Huang
,
M.
,
Li
,
R.
,
Xu
,
J.
,
Cheng
,
S.
,
Deng
,
H.
,
Zhang
,
B.
,
Rong
,
Z.
, and
Li
,
Y.
,
2021
, “
Effect of Thermal Input, Excess Air Coefficient and Combustion Mode on Natural Gas MILD Combustion in Industrial-Scale Furnace
,”
Fuel
,
302
, p.
121179
.
18.
Cho
,
E. S.
,
Danon
,
B.
,
de Jong
,
W.
, and
Roekaerts
,
D. J. E. M.
,
2011
, “
Behavior of a 300 kWth Regenerative Multi-burner Flameless Oxidation Furnace
,”
Appl. Energy
,
88
(
12
), pp.
4952
4959
.
19.
Yan
,
M.
,
Wang
,
J.
,
Hantoko
,
D.
, and
Kanchanatip
,
E.
,
2021
, “
Numerical Investigation of MSW Combustion Influenced by Air Preheating in a Full-Scale Moving Grate Incinerator
,”
Fuel
,
285
, p.
119193
.
20.
He
,
J.
,
Leng
,
C.
,
Xu
,
H.
,
Liu
,
B.
, and
Chen
,
Y.
,
2021
, “
Kinetic Analysis of Diffusion Combustion of Low Calorific Value Gas Under the Action of Thermal Dynamics
,”
Fuel
,
287
, p.
119435
.
21.
Saha
,
M.
,
Dally
,
B. B.
,
Chinnici
,
A.
, and
Medwell
,
P. R.
,
2019
, “
Effect of Co-Flow Oxygen Concentration on the MILD Combustion of Pulverised Coal
,”
Fuel Process. Technol.
,
193
, pp.
7
18
.
22.
Chunsheng
,
W.
,
Yan
,
Z.
,
Zejun
,
L.
, and
Fuxiang
,
Y.
,
2019
, “
Heat Transfer Simulation and Thermal Efficiency Analysis of New Vertical Heating Furnace
,”
Case Stud. Therm. Eng.
,
13
, p.
100414
.
23.
Altimira
,
K. C.
,
2005
, “
Numerical Simulation of Non-premixed Laminar and Turbulent Flames by means of Flamelet Modelling Approaches
,” Ph.D. Thesis, Universitat Politècnica de Catalunya, Spain.
24.
Li
,
X.
,
Zhang
,
L.
,
Sun
,
Y.
,
Jiang
,
B.
,
Li
,
X.
, and
Wang
,
J.
,
2015
, “
Numerical Simulation of the Flue Gas Side of Refining Vacuum Furnace Using CFD
,”
Chem. Eng. Sci.
,
123
, pp.
70
80
.
25.
Mayrhofer
,
M.
,
Koller
,
M.
,
Seemann
,
P.
,
Prieler
,
R.
, and
Hochenauer
,
C.
,
2021
, “
Evaluation of Flamelet-Based Combustion Models for the Use in a Flameless Burner Under Different Operating Conditions
,”
Appl. Therm. Eng.
,
183
(
P1
), p.
116190
.
26.
Rezaeimanesh
,
M.
,
Asghar Ghoreyshi
,
A.
,
Peyghambarzadeh
,
S. M.
, and
Hassan Hashemabadi
,
S.
,
2021
, “
A Coupled CFD Simulation Approach for Investigating the Pyrolysis Process in Industrial Naphtha Thermal Cracking Furnaces
,”
Chin. J. Chem. Eng.
,
44
, pp.
528
542
.
27.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
602
608
.
You do not currently have access to this content.