Abstract

The research work is carried out for deflagration and detonation combustion processes at different equivalence ratios of hydrogen–air mixtures in a pulse detonation combustor (PDC). Furthermore, the U-shape channel curvature radius and thickness effect on detonation wave propagation are also investigated. This numerical simulation has been done using a SIMPLE algorithm with the finite volume discretization method and laminar finite rate chemistry for volumetric reaction in the Ansys Fluent platform. The numerical result shows that the U-bend radius of R = 3.5 cm can enhance the faster deflagration-to-detonation transition. So far, the fully developed detonation wave was found near the curvature area of the detonation tube having a width of W = 8 cm. This enhanced detonation wave velocity reaches 2775 m/s, which is higher than the C-J detonation velocity. Furthermore, the entropy generation has been analyzed in two modes of the combustion process. The entropy generation number of 0.76 and 0.7 is obtained from the deflagration and detonation combustion processes. However, the entropy production rate is less in the detonation combustion process, but thermal entropy generation is more in the deflagration combustion process with a magnitude of 3.5 kJ/kg K for an equivalence ratio of φ = 1.5. A combustion efficiency of 78% is found in the detonation combustion process, which is comparatively higher than the deflagration process.

References

1.
Kailasanath
,
K.
,
2000
, “
Review of Propulsion Application of Detonation Waves
,”
AIAA J.
,
38
(
9
), pp.
1698
1708
.
2.
Pandey
,
K. M.
, and
Debnath
,
P.
,
2016
, “
Review on Recent Advances in Pulse Detonation Engines
,”
J. Combust.
, pp.
1
16
.
3.
Debnath
,
P.
, and
Pandey
,
K. M.
,
2021
, “
Effect of Operating Parameters on Application Based Performance Analysis of PDC: A Recent Review
,”
Mater. Today: Proc.
,
45
(
7
), pp.
6702
6707
.
4.
Frolov
,
S. M.
,
Aksenov
,
V. S.
, and
Shamshin
,
I. O.
,
2005
, “Detonation Propagation Through U-Bends,”
Nonequilibrium Processes, Combustion and Detonation
,
G.
Roy
,
S.
Frolov
, and
A.
Starik
, eds., Vol.
1
,
Torus Press
,
Moscow
, pp.
348
364
.
5.
Frolov
,
S. M.
,
Aksenov
,
V. S.
, and
Shamshin
,
I. O.
,
2007
, “
Shock Wave and Detonation Propagation Through U-Bend Tubes
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2421
2428
.
6.
Frolov
,
S. M.
,
Aksenov
,
V. S.
, and
Shamshin
,
I. O.
,
2007
, “
Reactive Shock and Detonation Propagation in U-Bend Tubes
,”
J. Loss Prev. Process Ind.
,
20
(
4–6
), pp.
501
508
.
7.
Frolov
,
S. M.
,
Aksenov
,
V. S.
, and
Shamshin
,
I. O.
,
2008
, “
Propagation of Shock and Detonation Waves in Channels With U-Shaped Bends of Limiting Curvature
,”
Russ. J. Phys. Chem. B
,
2
(
5
), pp.
759
774
.
8.
Wang
,
C. J.
, and
Wen
,
J. X.
,
2013
, “
Numerical Simulation of Shock and Detonation Propagation Through a U-Bend With a New Single-Step Chemistry Model for Propane-Air Mixture
,”
Proceedings of the Seventh International Seminar Fire and Explosion Hazards
,
Providence, RI
,
May 5–10
.
9.
Alessi
,
G.
,
Verstraete
,
T.
,
Koloszar
,
L.
, and
Jeronimus Petrus Antonius
,
J. V. B.
,
2019
, “
Comparison of Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Evaluations With Experimental Tests on U-Bend Duct Geometry
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
3
), pp.
315
322
.
10.
Verstraete
,
T.
,
Müller
,
L.
, and
Müller
,
J. D.
,
2017
, “
Adjoint-Based Design Optimization of an Internal Cooling Channel U-Bend for Minimised Pressure Losses
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), pp.
1
13
.
11.
Coletti
,
F.
,
Verstraete
,
T.
,
Bulle
,
J.
,
Van der Wielen
,
T.
,
Van den Berge
,
N.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
135
(
5
), p.
051016
.
12.
Semenov
,
I. V.
,
Utkin
,
P. S.
,
Markov
,
V. V.
,
Frolov
,
S. M.
, and
Aksenov
,
V. S.
,
2010
, “
Numerical and Experimental Investigation of Detonation Initiation in Profiled Tubes
,”
Combust. Sci. Technol.
,
18
(
11–12
), pp.
1735
1746
.
13.
Zittere
,
B. D.
,
2009
, “
Flowpath Design of a Three-Tube Valve-Less Pulse Detonation Combustor
,”
Master of Science in Mechanical Engineering
,
Naval Postgraduate School
.
14.
Otsuka
,
S.
,
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2010
, “
Numerical Investigation on Detonation Wave Through U-Bend
,”
J. Therm. Sci.
,
19
(
6
), pp.
540
544
.
15.
Gwak
,
M. C.
, and
Yoh
,
J. J.
,
2013
, “
Effect of Multi-Bend Geometry on Deflagration to Detonation Transition of a Hydrogen–Air Mixture in Tubes
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11446
11457
.
16.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
17.
Safari
,
M.
,
Sheikhi
,
M. R. H.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2010
, “
Entropy Transport Equation in Large Eddy Simulation for Exergy Analysis of Turbulent Combustion Systems
,”
Entropy
,
12
(
3
), pp.
434
444
.
18.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
,
2002
, “
Analysis of Entropy Generation and Exergy Loss During Combustion
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
869
874
.
19.
Yapici
,
H.
,
Basturk
,
G.
,
Kayatas
,
N.
, and
Albayrak
,
B.
,
2006
, “
Effect of Oxygen Fraction on Local Entropy Generation in a Hydrogen–Air Burner
,”
Heat Mass Transfer
,
43
(
1
), pp.
37
53
.
20.
Bouras
,
F.
,
Attia
,
M. E. H.
, and
Khaldi
,
F.
,
2015
, “
Entropy Generation Optimization in Internal Combustion Engine
,”
Environ. Process
,
2
(
S1
), pp.
233
242
.
21.
Arjmandi
,
H. R.
, and
Amani
,
E.
,
2015
, “
A Numerical Investigation of the Entropy Generation in and Thermodynamic Optimization of a Combustion Chamber
,”
Energy
,
81
(
1
), pp.
706
718
.
22.
Hutchins
,
T. E.
, and
Metghalchi
,
M.
,
2003
, “
Energy and Exergy Analyses of the Pulse Detonation Engine
,”
J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1075
1080
.
23.
Saffarian
,
M. R.
,
Bahoosh
,
R.
, and
Doranehgard
,
M. H.
,
2019
, “
Entropy Generation in the Intake Pipe of an Internal Combustion Engine
,”
Eur. Phys. J. Plus
,
134
(
9
), p.
476
.
24.
Debnath
,
P.
, and
Pandey
,
K. M.
,
2017
, “
Exergetic Efficiency Analysis of Hydrogen–Air Detonation in Pulse Detonation Combustor Using Computational Fluid Dynamics
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
44
54
.
25.
Debnath
,
P.
, and
Pandey
,
K. M.
,
2017
, “
Numerical Investigation of Detonation Combustion Wave in Pulse Detonation Combustor With Ejector
,”
J. Appl. Fluid Mech.
,
10
(
2
), pp.
725
733
.
26.
Debnath
,
P.
, and
Pandey
,
K. M.
,
2021
, “
Numerical Analysis of Detonation Combustion Wave in Pulse Detonation Combustor With Modified Ejector With Gaseous and Liquid Fuel Mixture
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
3243
3254
.
27.
Debnath
,
P.
, and
Pandey
,
K. M.
,
2020
, “
Numerical Investigation of Detonation Combustion Wave Propagation in Pulse Detonation Combustor With Nozzle
,”
Adv. Aircr. Spacecr. Sci.
,
7
(
3
), pp.
187
202
.
28.
Garnier
,
E.
,
Adams
,
N.
, and
Saguat
,
P.
,
2009
,
Large Eddy Simulation for Compressible Flows
,
Springer-Verlag
,
New York
.
29.
FLUENT
,
2006
, Computational Fluid Dynamics, Software Package, Ver, 6.3.26, ANSYS, Canonsburg, PA.
30.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
31.
Xiao
,
H.
, and
Oran
,
E. S.
,
2020
, “
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen–Air Mixture in a Channel With an Array of Obstacles of Different Shapes
,”
Combust. Flame
,
220
, pp.
378
393
.
32.
CEAui Chemical Equilibrium With Applications, Software Package, 2004, Ver. 1.0, Bonnie J. McBride and Sanford Gordon., NASA Glenn Research Center, Cleveland, OH.
33.
Gerlinger
,
P.
,
Stoll
,
P.
,
Kindler
,
M.
,
Schneider
,
F.
, and
Aigner
,
M.
,
2008
, “
Numerical Investigation of Mixing and Combustion Enhancement in Supersonic Combustors by Strut Induced Stream Wise Vorticity
,”
Aerosp. Sci. Technol.
,
12
(
2
), pp.
159
168
.
You do not currently have access to this content.