Abstract

Tremendous burden is compelled on the energy consumption of data centers with the rapid development of information technology, and a healthy thermal environment is critical for improving the cooling efficiency of data centers. Furthermore, the thermal management of the data center is determined by the evaluation of its thermal environment. However, most of the existing evaluation metrics describe the thermal environment through a single scale, which cannot fully reflect the thermal performance of data centers at different scales. To simplify the evaluation of the thermal environment in data centers, a novel multiscale evaluation metric of the recirculation and hot spots index (RHSI) is proposed in this study. The numerical model of an operating data center is established and verified with the experiments on site. Then, the thermal environment of the data center is evaluated based on the RHSI and the existing metrics. Finally, the applicability of the RHSI is further discussed from different scales in detail. The results show that all bypass airflow, hot recirculation, and local hot spots can be derived from the proposed RHSI simultaneously by comparing with the evaluation metrics of supply heat index (SHI) and rack cooling indicator (RCI) at the room scale, β at the rack scale, and index of mixing (IOM) at the row scale. The proposed RHSI can provide a guiding significance for the thermal management of data centers.

References

1.
Cho
,
J.
, and
Woo
,
J.
,
2020
, “
Development and Experimental Study of an Independent Row-Based Cooling System for Improving Thermal Performance of a Data Center
,”
Appl. Therm. Eng.
,
169
(
6
), p.
114857
.
2.
Masanet
,
E.
,
Shehabi
,
A.
,
Lei
,
N.
,
Smith
,
S.
, and
Koomey
,
J.
,
2020
, “
Recalibrating Global Data Center Energy-Use Estimates
,”
Science
,
367
(
6481
), pp.
984
986
.
3.
Gong
,
X.
,
Zhang
,
Z.
,
Gan
,
S.
,
Niu
,
B.
,
Yang
,
L.
,
Xu
,
H.
, and
Gao
,
M.
,
2020
, “
A Review on Evaluation Metrics of Thermal Performance in Data Centers
,”
Build. Environ.
,
177
(
11
), p.
106907
.
4.
ASHRAE Technical Committee 9.9
,
2011
,
Thermal Guidelines for Data Processing Environments
,
American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc.
,
GA
.
5.
Cho
,
J.
,
Yang
,
J.
,
Lee
,
C.
, and
Lee
,
J.
,
2015
, “
Development of an Energy Evaluation and Design Tool for Dedicated Cooling Systems of Data Centers: Sensing Data Center Cooling Energy Efficiency
,”
Energy Build.
,
96
(
11
), pp.
357
372
.
6.
Tian
,
H.
,
Liang
,
H.
, and
Li
,
Z.
,
2018
, “
An Entransy Based Method for Thermal Analysis and Management of High Heat Density Data Centers
,”
Int. J. Heat Mass Transfer
,
127
(
13
), pp.
1025
1039
.
7.
Chu
,
W.-X.
, and
Wang
,
C.-C.
,
2019
, “
A Review on Airflow Management in Data Centers
,”
Appl. Energy
,
240
(
7
), pp.
84
119
.
8.
Chu
,
W.
,
Wu
,
J.
,
Tsui
,
Y.
, and
Wang
,
C.
,
2020
, “
Impact of Overhead Air Supply Layout on the Thermal Performance of a Container Data Center
,”
ASME J. Electron. Packag.
,
142
(
1
), pp.
75
86
.
9.
Wang
,
F.
,
Huang
,
Y.
, and
Prasetyo
,
B.
,
2019
, “
Energy-Efficient Improvement Approaches Through Numerical Simulation and Field Measurement for a Data Center
,”
Energy
,
12
(
14
), p.
2757
.
10.
Nada
,
S. A.
, and
Elfeky
,
K. E.
,
2016
, “
Experimental Investigations of Thermal Managements Solutions in Data Centers Buildings for Different Arrangements of Cold Aisles Containments
,”
J. Build. Eng.
,
5
(
1
), pp.
41
49
.
11.
Nada
,
S. A.
,
Elfeky
,
K. E.
, and
Attia
,
A. M. A.
,
2016
, “
Experimental Investigations of Air Conditioning Solutions in High Power Density Data Centers Using a Scaled Physical Model
,”
Int. J. Refrig.
,
63
(
3
), pp.
87
99
.
12.
Nada
,
S. A.
, and
Abbas
,
A. M.
,
2021
, “
Solutions of Thermal Management Problems for Terminal Racks of In-Row Cooling Architectures in Data Centers
,”
Build. Environ.
,
201
(
15
), p.
107991
.
13.
Liu
,
H.
,
Song
,
W.
,
Jin
,
T.
,
Wu
,
Z.
,
Yan
,
F.
, and
Song
,
J.
,
2020
, “
A Dynamic Thermal-Allocation Solution to the Complex Economic Benefit for a Data Center
,”
Complexity
,
2020
(
6
), pp.
1
12
.
14.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
Oliveira
,
V. D.
, and
Thome
,
J. R.
,
2012
, “
A Review of on-Chip Micro-Evaporation: Experimental Evaluation of Liquid Pumping and Vapor Compression Driven Cooling Systems and Control
,”
Appl. Energy
,
92
(
4
), pp.
147
161
.
15.
Jin
,
C.
,
Bai
,
X.
, and
Yang
,
C.
,
2019
, “
Effects of Airflow on the Thermal Environment and Energy Efficiency in Raised-Floor Data Centers: A Review
,”
Sci. Total Environ.
,
695
(
50
), p.
133801
.
16.
Khalaj
,
A. H.
, and
Halgamuge
,
S. K.
,
2017
, “
A Review on Efficient Thermal Management of Air- and Liquid-Cooled Data Centers: From Chip to the Cooling System
,”
Appl. Energy
,
205
(
21
), pp.
1165
1188
.
17.
Chainer
,
T. J.
,
Schultz
,
M. D.
,
Parida
,
P.
, and
Gaynes
,
M. A.
,
2017
, “
Improving Data Center Energy Efficiency With Advanced Thermal Management
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
7
(
8
), pp.
1228
1239
.
18.
Lu
,
Z.
,
Zhang
,
K.
,
Liu
,
J.
, and
Li
,
F.
,
2020
, “
Effect of Branching Level on the Performance of Constructal Theory Based Y-Shaped Liquid Cooling Heat Sink
,”
Appl. Therm. Eng.
,
168
(
5
), p.
114824
.
19.
Tradat
,
M. I.
,
Manaserh
,
Y. M. A.
,
Sammakia
,
B. G.
,
Hoang
,
C. H.
, and
Alissa
,
H. A.
,
2021
, “
An Experimental and Numerical Investigation of Novel Solution for Energy Management Enhancement in Data Centers Using Underfloor Plenum Porous Obstructions
,”
Appl. Energy
,
289
(
9
), p.
116663
.
20.
Ahmadi
,
V. E.
, and
Erden
,
H. S.
,
2020
, “
A Parametric CFD Study of Computer Room Air Handling Bypass in Air-Cooled Data Centers
,”
Appl. Therm. Eng.
,
166
(
3
), p.
114685
.
21.
Lajevardi
,
B.
,
Haapala
,
K. R.
, and
Junker
,
J. F.
,
2015
, “
Real-Time Monitoring and Evaluation of Energy Efficiency and Thermal Management of Data Centers
,”
J. Manuf. Syst.
,
37
(
5
), pp.
511
516
.
22.
Fiandrino
,
C.
,
Kliazovich
,
D.
,
Bouvry
,
P.
, and
Zomaya
,
A. Y.
,
2017
, “
Performance and Energy Efficiency Metrics for Communication Systems of Cloud Computing Data Centers
,”
IEEE Trans. Cloud Comput.
,
5
(
4
), pp.
738
750
.
23.
Sharma
,
R.
,
Bash
,
C.
, and
Patel
,
C.
,
2002
, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
St. Louis, MO
,
June 24–26
, pp.
1
11
.
24.
Schmidt
,
R. R.
,
Cruz
,
E. E.
, and
Iyengar
,
M. K.
,
2005
, “
Challenges of Data Center Thermal Management
,”
IBM J. Res. Dev.
,
49
(
4.5
), pp.
709
723
.
25.
Tian
,
H.
,
Li
,
Z.
, and
Qian
,
X.
,
2012
, “
Study on the Evaluation Index Data Center Thermal Environment
,”
J. Refrig.
,
33
(
5
), pp.
5
9
.
26.
Beaty
,
D.
, and
Davidson
,
T.
,
2005
, “
Datacom Airflow Patterns
,”
ASHRAE J.
,
47
(
4
), pp.
50
54
.
27.
Herrlin
,
M. K.
,
2007
, “
Improved Data Center Energy Efficiency and Thermal Performance by Advanced Airflow Analysis
,”
Proceedings of Digital Power Forum
,
San Francisco, CA
,
Sept. 10–12
, pp.
10
12
.
28.
Tozer
,
R.
, and
Salim
,
M.
,
2010
, “
Data Center air Management Metrics-Practical Approach
,”
12th Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas
,
NV, June 2–5
.
29.
Mcallister
,
S.
,
Carey
,
V. P.
,
Shah
,
A.
,
Bash
,
C.
, and
Patel
,
C.
,
2008
, “
Strategies for Effective Use of Exergy-Based Modeling of Data Center Thermal Management Systems
,”
Microelectron. J.
,
39
(
7
), pp.
1023
1029
.
30.
Shah
,
A. J.
,
Carey
,
V. P.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2008
, “
Exergy Analysis of Data Center Thermal Management Systems
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
2
), p.
021401
.
31.
Qian
,
X.
,
Li
,
Z.
, and
Li
,
Z.
,
2015
, “
Entransy and Exergy Analyses of Airflow Organization in Data Centers
,”
Int. J. Heat Mass Transfer
,
81
(
2
), pp.
252
259
.
32.
Qian
,
X.
,
Li
,
Z.
, and
Li
,
Z.
,
2013
, “
A Thermal Environmental Analysis Method for Data Centers
,”
Int. J. Heat Mass Transfer
,
62
(
7
), pp.
579
585
.
33.
Xie
,
M.
,
Wang
,
J.
, and
Liu
,
J.
,
2019
, “
Evaluation Metrics of Thermal Management in Data Centers Based on Exergy Analysis
,”
Appl. Therm. Eng.
,
147
(
2
), pp.
1083
1095
.
34.
Almoli
,
A.
,
Thompson
,
A.
,
Kapur
,
N.
,
Summers
,
J.
,
Thompson
,
H.
, and
Hannah
,
G.
,
2012
, “
Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres
,”
Appl. Energy
,
89
(
1
), pp.
150
155
.
35.
Priyadumkol
,
J.
, and
Kittichaikarn
,
C.
,
2014
, “
Application of the Combined Air-Conditioning Systems for Energy Conservation in Data Center
,”
Energy Build.
,
68
(
1
), pp.
580
586
.
36.
Ling
,
Y.
,
Zhang
,
X.
,
Zhang
,
K.
, and
Jin
,
X.
,
2017
, “
On the Characteristics of Airflow Through the Perforated Tiles for Raised-Floor Data Centers
,”
J. Build. Eng.
,
10
(
2
), pp.
60
68
.
You do not currently have access to this content.