Abstract

This article presents performance comparison between different liquid metal-based nanofluids termed as nano-liquid metal fluids in a microchannel heat sink to achieve ultimate cooling solutions without sacrificing the compact structure and heavy computing speed. The hydraulic and thermal performance of nanofluids having five different liquid metals (Ga, GaIn, EGaIn, GaSn, and EGaInSn) as base fluid and four different nanoparticles (carbon nanotube (CNT), Al2O3, Cu, and diamond) as solute are evaluated comparing with water-based nanofluids. Three-dimensional flow inside miniaturized channels are predicted using single-phase and two-phase numerical simulations. Numerical models are validated against data obtained from experimental studies from the literature. Three different grids are developed, and several element sizes were compared to obtain the grid independence. Upon evaluation, the study can point out that liquid metal-based nanofluids can generate much superior heat transport characteristics with more than 3.41 times higher heat transfer coefficient compared to conventional water-based nanofluids. GaIn–CNT combination exhibits the best thermal solution possible with a heat transfer coefficient increment of 2.68%, 17.19%, 22.16%, and 2.62% over CNT particle-based EGaIn, EGaInSn, Ga, GaSn liquid metal, respectively, for Re = 750. Considering hydraulic performance, performance evaluation criterion (PEC) has been introduced and Ga-based nanofluids are found to be most effective in this perspective. The effect on overall cooling effectiveness has also been carried out with a detailed particle concentration study. This study paves the pathway of using these extraordinary coolants in mini/microchannel heat sinks.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking For VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Shah
,
R. K.
,
2006
, “
Advances in Science and Technology of Compact Heat Exchangers
,”
Heat Transfer Eng.
,
27
(
5
), pp.
3
22
.
3.
Popescu
,
T.
,
Marinescu
,
M.
,
Pop
,
H.
,
Popescu
,
G.
, and
Feidt
,
M.
,
2012
, “
Microchannel Heat Exchangers—Present and Perspectives
,”
UPB Sci. Bull. Ser. D: Mech. Eng.
,
74
(
3
), pp.
55
70
.
4.
Naqiuddin
,
N. H.
,
Saw
,
L. H.
,
Yew
,
M. C.
,
Yusof
,
F.
,
Ng
,
T. C.
, and
Yew
,
M. K.
,
2018
, “
Overview of Micro-Channel Design for High Heat Flux Application
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
901
914
.
5.
Hadad
,
Y.
,
Ramakrishnan
,
B.
,
Pejman
,
R.
,
Rangarajan
,
S.
,
Chiarot
,
P. R.
,
Pattamatta
,
A.
, and
Sammakia
,
B.
,
2019
, “
Three-Objective Shape Optimization and Parametric Study of a Micro-Channel Heat Sink With Discrete Non-Uniform Heat Flux Boundary Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
720
737
.
6.
Chandra
,
S.
, and
Prakash
,
O.
,
2016
, “
Heat Transfer in Microchannel Heat Sink: Review
,”
International Conference on Recent Advances in Mechanical Engineering
,
Delhi, India
,
Oct. 14–15
.
7.
Li
,
X.
, and
Jia
,
L.
,
2015
, “
The Investigation On Flow Boiling Heat Transfer Of R134a in Micro-Channels
,”
J. Therm. Sci.
,
24
(
5
), pp.
452
462
.
8.
Ali
,
R.
,
Palm
,
B.
, and
Maqbool
,
M. H.
,
2012
, “
Flow Boiling Heat Transfer of Refrigerants R134A and R245fa in a Horizontal Micro-Channel
,”
Exp. Heat Transfer
,
25
(
3
), pp.
181
196
.
9.
Dong
,
T.
,
Yang
,
Z.
,
Bi
,
Q.
, and
Zhang
,
Y.
,
2008
, “
Freon R141b Flow Boiling in Silicon Microchannel Heat Sinks: Experimental Investigation
,”
Heat Mass Transfer
,
44
(
3
), pp.
315
324
.
10.
Choi
,
S. U. S.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
3
), p.
033106
.
11.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
12.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, Sio2 and Tio2 Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.
13.
Huminic
,
G.
, and
Huminic
,
A.
,
2012
, “
Application of Nanofluids in Heat Exchangers: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5625
5638
.
14.
Ho
,
C. J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
96
103
.
15.
Kumar
,
P. C. M.
, and
Kumar
,
C. M. A.
,
2020
, “
Numerical Study on Heat Transfer Performance Using Al2O3/Water Nanofluids in Six Circular Channel Heat Sink For Electronic Chip
,”
Mater. Today: Proc.
,
21
(
1
), pp.
194
201
.
16.
Moraveji
,
M. K.
, and
Ardehali
,
R. M.
,
2013
, “
CFD Modeling (Comparing Single and Two-Phase Approaches) on Thermal Performance of Al2O3/Water Nanofluid in Mini-Channel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
44
(
1
), pp.
157
164
.
17.
Alfaryjat
,
A.
,
Gheorghian
,
A. T.
,
Nabbat
,
A.
,
Ştefǎnescu
,
M. F.
, and
Dobrovicescu
,
A.
,
2018
, “
The Impact of Different Base Nanofluids on the Fluid Flow and Heat Transfer Characteristics in Rhombus Microchannels Heat Sink
,”
UPB Sci. Bull. Ser. D: Mech. Eng.
,
80
(
1
), pp.
181
194
.
18.
Razali
,
A. A.
,
Sadikin
,
A.
, and
Ibrahim
,
S. A.
,
2017
, “
Heat Transfer of Al2O3 Nanofluids in Microchannel Heat Sink
,”
AIP Conf. Proc.
,
1831
(
1
), p.
020050
.
19.
Sivakumar
,
A.
,
Alagumurthi
,
N.
, and
Senthilvelan
,
T.
,
2017
, “
Effect of Serpentine Grooves on Heat Transfer Characteristics of Microchannel Heat Sink With Different Nanofluids
,”
Heat Transf.—Asian Res.
,
46
(
3
), pp.
201
217
.
20.
Azizi
,
Z.
,
Alamdari
,
A.
, and
Malayeri
,
M. R.
,
2015
, “
Convective Heat Transfer of Cu-Water Nanofluid in a Cylindrical Microchannel Heat Sink
,”
Energy Convers. Manag.
,
101
(
1
), pp.
515
524
.
21.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2006
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2457
2463
.
22.
Halelfadl
,
S.
,
Adham
,
A. M.
,
Mohd-Ghazali
,
N.
,
Maré
,
T.
,
Estellé
,
P.
, and
Ahmad
,
R.
,
2014
, “
Optimization of Thermal Performances and Pressure Drop of Rectangular Microchannel Heat Sink Using Aqueous Carbon Nanotubes Based Nanofluid
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
492
499
.
23.
Martínez
,
V. A.
,
Vasco
,
D. A.
,
García-Herrera
,
C. M.
, and
Ortega-Aguilera
,
R.
,
2019
, “
Numerical Study of Tio2-Based Nanofluids Flow in Microchannel Heat Sinks: Effect of the Reynolds Number and the Microchannel Height
,”
Appl. Therm. Eng.
,
161
(
1
), p.
114130
.
24.
Song
,
H.
,
Kim
,
T.
,
Kang
,
S.
,
Jin
,
H.
,
Lee
,
K.
, and
Yoon
,
H. J.
,
2020
, “
Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications
,”
Small
,
16
(
12
), pp.
1
21
.
25.
Smither
,
R. K.
,
Forster
,
G. A.
,
Kot
,
C. A.
, and
Kuzay
,
T. M.
,
1988
, “
Liquid Gallium Metal Cooling For Optical Elements With High Heat Loads
,”
Nucl. Inst. Methods Phys. Res. A
,
266
(
1–3
), pp.
517
524
.
26.
Sawada
,
T.
,
Netchaev
,
A.
,
Ninokata
,
H.
, and
Endo
,
H.
,
2000
, “
Gallium-Cooled Liquid Metallic-Fueled Fast Reactor
,”
Prog. Nucl. Energy
,
37
(
1–4
), pp.
313
319
.
27.
Liu
,
Y.
,
Chen
,
H. F.
,
Zhang
,
H. W.
, and
Li
,
Y. X.
,
2015
, “
Heat Transfer Performance of Lotus-Type Porous Copper Heat Sink With Liquid Gainsn Coolant
,”
Int. J. Heat Mass Transfer
,
80
(
1
), pp.
605
613
.
28.
Muhammad
,
A.
,
Selvakumar
,
D.
,
Iranzo
,
A.
,
Sultan
,
Q.
, and
Wu
,
J.
,
2020
, “
Comparison of Pressure Drop and Heat Transfer Performance for Liquid Metal Cooled Mini-Channel With Different Coolants and Heat Sink Materials
,”
J. Therm. Anal. Calorim.
,
141
(
1
), pp.
289
300
.
29.
Muhammad
,
A.
,
Selvakumar
,
D.
, and
Wu
,
J.
,
2020
, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Liquid Metal Cooled Mini-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
150
(
1
), p.
119265
.
30.
Liu
,
H. L.
,
An
,
X. K.
, and
Wang
,
C. S.
,
2017
, “
Heat Transfer Performance of T-Y Type Micro-Channel Heat Sink With Liquid Gainsn Coolant
,”
Int. J. Therm. Sci.
,
120
(
1
), pp.
203
219
.
31.
Sarowar
,
M. T.
,
2021
, “
Numerical Analysis of a Liquid Metal Cooled Mini Channel Heat Sink With Five Different Ceramic Substrates
,”
Ceram. Int.
,
47
(
1
), pp.
214
225
.
32.
Barbier
,
F.
, and
Blanc
,
J.
,
1999
, “
Corrosion of Martensitic and Austenitic Steels in Liquid Gallium
,”
J. Mater. Res.
,
14
(
3
), pp.
737
744
.
33.
Deng
,
Y. G.
, and
Liu
,
J.
,
2009
, “
Corrosion Development Between Liquid Gallium and Four Typical Metal Substrates Used in Chip Cooling Device
,”
Appl. Phys. A
,
95
(
3
), pp.
907
915
.
34.
Tawk
,
M.
,
Avenas
,
Y.
,
Kedous-Lebouc
,
A.
, and
Petit
,
M.
,
2013
, “
Numerical and Experimental Investigations of the Thermal Management of Power Electronics With Liquid Metal Mini-Channel Coolers
,”
IEEE Trans. Ind. Appl.
,
49
(
3
), pp.
1421
1429
.
35.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
(
3
), pp.
252
256
.
36.
Zhou
,
X.
,
Li
,
X.
,
Cheng
,
K.
, and
Huai
,
X.
,
2018
, “
Numerical Study of Heat Transfer Enhancement of Nano Liquid-Metal Fluid Forced Convection i Circular Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(8), p.
081901
.
37.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.
38.
Moraveji
,
M. K.
,
Darabi
,
M.
,
Haddad
,
S. M. H.
, and
Davarnejad
,
R.
,
2011
, “
Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow With Computational Fluid Dynamics
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1291
1295
.
39.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2007
, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
240
249
.
40.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
41.
Moraveji
,
M. K.
, and
Hejazian
,
M.
,
2012
, “
Modeling of Turbulent Forced Convective Heat Transfer and Friction Factor in a Tube for Fe 3o 4 Magnetic Nanofluid With Computational Fluid Dynamics
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1293
1296
.
42.
El-Batsh
,
H. M.
,
Doheim
,
M. A.
, and
Hassan
,
A. F.
,
2012
, “
On the Application of Mixture Model for Two-Phase Flow Induced Corrosion in a Complex Pipeline Configuration
,”
Appl. Math. Model.
,
36
(
11
), pp.
5686
5699
.
43.
Moghari
,
R. M.
,
Akbarinia
,
A.
,
Shariat
,
M.
,
Talebi
,
F.
, and
Laur
,
R.
,
2011
, “
Two Phase Mixed Convection Al2O3-Water Nanofluid Flow in an Annulus
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
585
595
.
44.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Performance Analysis of Turbulent Convection Heat Transfer of Al2O3 Water-Nanofluid in Circular Tubes at Constant Wall Temperature
,”
Energy
,
77
(
1
), pp.
403
413
.
45.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Ribeiro
,
J. P.
,
Gruss
,
J. A.
, and
Soriano
,
O.
,
2011
, “
Hydraulic and Heat Transfer Study of SiO2/Water Nanofluids in Horizontal Tubes With Imposed Wall Temperature Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
424
439
.
46.
Roy
,
G.
,
Gherasim
,
I.
,
Nadeau
,
F.
,
Poitras
,
G.
, and
Nguyen
,
C. T.
,
2012
, “
Heat Transfer Performance and Hydrodynamic Behavior of Turbulent Nanofluid Radial Flows
,”
Int. J. Therm. Sci.
,
58
(
1
), pp.
120
129
.
You do not currently have access to this content.