Abstract

Energy storage using latent heat of solid–liquid phase change material (PCM) is an efficient option due to high energy density and low volume variation during phase change. Such type of storage is suitable to exploit untapped solar energy and waste heat energy. The present work explores the analytical approach to study the unsteady charging behavior of PCM inside latent heat thermal energy storage (LHTES) system. The radial, axial as well as temporal effects on the melting of PCM are investigated analytically. Relation between time, temperature, radius, and axial distance of storage system is developed using energy equation in cylindrical coordinates. The 49% reduction in melting time of PCM was noted with an increase in heat transfer fluid inlet temperature from 185 °C to 200 °C. It was also observed that melt front moves 1.28 times faster when axial position changes from 100 mm to 200 mm. Convection heat transfer plays a vital role during the charging process, and it is found that the melt front moves radially outward and axially upward during the melting of PCM. It can also be concluded that analytical tools like the one presented in this study can be instrumental in analyzing the thermal performance of storage units.

References

1.
World Energy Council
,
2013
, “
Energy Resources: Solar
,”
World Energy Counc. 2013 World Energy Resour. Sol
., pp.
1
28
.
3.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Experimental Investigation of Thermal Performance of Flat and V-Corrugated Plate Solar Air Heaters With and Without PCM as Thermal Energy Storage
,”
Energy Convers. Manage.
,
113
, pp.
264
272
.
4.
Mahfuz
,
M. H.
,
Anisur
,
M. R.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Performance Investigation of Thermal Energy Storage System With Phase Change Material (PCM) for Solar Water Heating Application
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
132
139
.
5.
Faegh
,
M.
, and
Shafii
,
M. B.
,
2017
, “
Experimental Investigation of a Solar Still Equipped With an External Heat Storage System Using Phase Change Materials and Heat Pipes
,”
Desalination
,
409
, pp.
128
135
.
6.
Shalaby
,
S. M.
,
Bek
,
M. A.
, and
El-Sebaii
,
A. A.
,
2014
, “
Solar Dryers With PCM as Energy Storage Medium: A Review
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
110
116
.
7.
Saxena
,
R.
,
Biplab
,
K.
, and
Rakshit
,
D.
,
2018
, “
Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011001
.
8.
Kumar
,
A.
, and
Saha
,
S. K.
,
2018
, “
Latent Heat Thermal Storage With Variable Porosity Metal Matrix: A Numerical Study
,”
Renewable Energy
,
125
, pp.
962
973
.
9.
Singh
,
R. P.
,
Kaushik
,
S. C.
, and
Rakshit
,
D.
,
2018
, “
Melting Phenomenon in a Finned Thermal Storage System With Graphene Nano-Plates for Medium Temperature Applications
,”
Energy Convers. Manage.
,
163
, pp.
86
99
.
10.
Vyshak
,
N. R.
, and
Jilani
,
G.
,
2007
, “
Numerical Analysis of Latent Heat Thermal Energy Storage System
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2161
2168
.
11.
Niyas
,
H.
, and
Muthukumar
,
P.
,
2013
, “
Performance Analysis of Latent Heat Storage Systems
,”
Int. J. Sci. Eng. Res.
,
4
(
12
), pp.
74
79
.
12.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
13.
Agrawal
,
A.
, and
Rakshit
,
D.
,
2021
, “Review on Thermal Performance Enhancement Techniques of Latent Heat Thermal Energy Storage (LHTES) System for Solar and Waste Heat Recovery Applications,”
New Research Directions in Solar Energy Technologies
,
H.
Tyagi
,
P. R.
Chakraborty
,
S.
Powar
, and
A. K.
Agarwal
, eds.,
Springer
,
Singapore
, pp.
411
438
.
14.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2014
, “
Experimental Investigations on Latent Heat Storage Unit Using Paraffin Wax as Phase Change Material
,”
Exp. Heat Transfer
,
27
(
1
), pp.
40
55
.
15.
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2014
, “
Experimental and Computational Evolution of a Shell and Tube Heat Exchanger as a PCM Thermal Storage System
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
128
136
.
16.
Ezan
,
M. A.
,
Ozdogan
,
M.
, and
Erek
,
A.
,
2011
, “
Experimental Study on Charging and Discharging Periods of Water in a Latent Heat Storage Unit
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2205
2219
.
17.
Kumar
,
A.
, and
Saha
,
S. K.
,
2020
, “
Experimental and Numerical Study of Latent Heat Thermal Energy Storage With High Porosity Metal Matrix Under Intermittent Heat Loads
,”
Appl. Energy
,
263
, p.
114649
.
18.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
.
19.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2011
, “
Numerical Study on Thermal Energy Storage Performance of Phase Change Material Under Non-Steady-State Inlet Boundary
,”
Appl. Energy
,
88
(
11
), pp.
4172
4179
.
20.
Lacroix
,
M.
,
1993
, “
Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Sol. Energy
,
50
(
4
), pp.
357
367
.
21.
Shabgard
,
H.
,
Bergman
,
T. L.
,
Sharifi
,
N.
, and
Faghri
,
A.
,
2010
, “
High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2979
2988
.
22.
Tiari
,
S.
, and
Qiu
,
S.
,
2015
, “
Three-Dimensional Simulation of High Temperature Latent Heat Thermal Energy Storage System Assisted by Finned Heat Pipes
,”
Energy Convers. Manage.
,
105
, pp.
260
271
.
23.
Esen
,
M.
,
Durmuş
,
A.
, and
Durmuş
,
A.
,
1998
, “
Geometric Design of Solar-Aided Latent Heat Store Depending on Various Parameters and Phase Change Materials
,”
Sol. Energy
,
62
(
1
), pp.
19
28
.
24.
Tabassum
,
T.
,
Hasan
,
M.
, and
Begum
,
L.
,
2017
, “
2-D Numerical Investigation of Melting of an Impure PCM in the Arbitrary-Shaped Annuli
,”
Int. J. Therm. Sci.
,
114
, pp.
296
319
.
25.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Numerical and Experimental Investigation of Heat Transfer in a Shell and Tube Thermal Energy Storage System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
71
78
.
26.
Kalaiselvam
,
S.
,
Veerappan
,
M.
,
Arul Aaron
,
A.
, and
Iniyan
,
S.
,
2008
, “
Experimental and Analytical Investigation of Solidification and Melting Characteristics of PCMs Inside Cylindrical Encapsulation
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
858
874
.
27.
Zhang
,
Y.
, and
Faghri
,
A.
,
1996
, “
Semi-Analytical Solution of Thermal Energy Storage System With Conjugate Laminar Forced Convection
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
717
724
.
28.
Mosaffa
,
A. H.
,
Talati
,
F.
,
Basirat Tabrizi
,
H.
, and
Rosen
,
M. A.
,
2012
, “
Analytical Modeling of PCM Solidification in a Shell and Tube Finned Thermal Storage for Air Conditioning Systems
,”
Energy Build.
,
49
, pp.
356
361
.
29.
Bechiri
,
M.
, and
Mansouri
,
K.
,
2015
, “
Analytical Solution of Heat Transfer in a Shell-and-Tube Latent Thermal Energy Storage System
,”
Renewable Energy
,
74
, pp.
825
838
.
30.
Gil
,
A.
,
Oró
,
E.
,
Peiró
,
G.
,
Álvarez
,
S.
, and
Cabeza
,
L. F.
,
2013
, “
Material Selection and Testing for Thermal Energy Storage in Solar Cooling
,”
Renewable Energy
,
57
, pp.
366
371
.
You do not currently have access to this content.