Abstract

Infrared drying characteristics and quality variations (color change, hardness, contents of polyphenol and flavonoid) of lily bulbs under blanching pretreatment are investigated. Influences of parameters such as pretreatment temperature and time and infrared drying temperature are discussed. Effective moisture diffusivity coefficient, activation energy, and energy consumption were calculated. Results showed that drying time was reduced by 62.5%, 56.3%, and 61.5% at 90 °C compared to 60 °C when blanching time was 4, 5, and 6 min, respectively. A blanching time of 5 min and drying temperature of 70 °C were ideal for pretreatment and drying to maintain good color quality. Hardness value of lily bulb decreased as drying temperature and blanching time increased. Seventy to eighty degree celcius was ideal drying condition to maintain good hardness quality. Blanching time and drying temperature differently affected contents of flavonoids and polyphenols of lily bulbs. Basically, when blanching time was relatively long and drying temperature was relatively high, the content of polyphenols was high.

References

1.
Chi
,
X.-S.
,
Wang
,
S.-J.
,
Baloch
,
Z.
,
Zhang
,
H.-X.
,
Li
,
X.-Y.
,
Zhang
,
Z.
,
Zhang
,
H.-L.
, et al
,
2019
, “
Research Progress on Classical Traditional Chinese Medicine Formula Lily Bulb and Rehmannia Decoction in the Treatment of Depression
,”
Biomed. Pharmacother.
,
112
(
1
), p.
108616
.
2.
Huang
,
D.-J.
,
Li
,
W.-T.
,
Dawuda
,
M. M.
,
Huo
,
J.-Q.
,
Li
,
C.-X.
,
Wang
,
C.-L.
, and
Liao
,
W.-B.
,
2021
, “
Hydrogen Sulfide Reduced Colour Change in Lanzhou Lily-Bulb Scales
,”
Postharvest Biol. Technol.
,
176
(
11
), p.
111520
.
3.
Nie
,
H.
,
Yan
,
H.
,
Qian
,
D.-W.
,
Duan
,
J.-A.
,
Ouyang
,
Z.
,
Qian
,
Y.-F.
, and
Guan
,
H.-L.
,
2013
, “
Study on the Effect of Different Processing Methods in Lilium Lancifolium Thunb. Bulbs
,”
Mod. Chin. Med.
,
14
(
4
), pp.
308
313
.
4.
Ma
,
L. T.
, and
Zhai
,
X. W.
,
2015
, “
Study on the Sulfur-Free Anti-Browning Process of Lily Bulb During Hot Air Drying
,”
Gansu Sci. Technol.
,
31
(
12
), pp.
132
135
.
5.
Li
,
Y.-L.
,
Ding
,
S.-H.
,
Gao
,
W.
,
Xie
,
Q.-T.
,
Xie
,
Q.-T.
, and
Li
,
G.-Y.
,
2018
, “
Effect of Blanching Method on Endogenous Browning-Related Enzymes and Microstructure of Lily Bulb
,”
Food Sci.
,
39
(
17
), pp.
53
60
.
6.
Huang
,
D.
,
Tao
,
Y.-C.
,
Li
,
W.
,
Shrif
,
S.-A.
, and
Tang
,
X.-H.
,
2020
, “
Heat Transfer Characteristics and Kinetics of Camellia oleifera Seeds During Hot-Air Drying
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031017
.
7.
Jian
,
Q.-F.
,
Luo
,
L.-Z.
, and
Huang
,
B.
,
2019
, “
Performance Improvement of a Domestic Condenser Tumble Clothes Dryer by Using a Heat Pipe Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061018
.
8.
Shi
,
S.
,
Zhao
,
M.-N.
,
Li
,
Y.
,
Kong
,
B.-H.
,
Liu
,
Q.
,
Sun
,
F.-D.
,
Yu
,
W.-H.
, and
Xia
,
X.-F.
,
2021
, “
Effect of Hot Air Gradient Drying on Quality and Appearance of Beef Jerky.”
,”
LWT—Food Sci. Technol.
,
150
(
9
), p.
111974
.
9.
Singh
,
P.
, and
Talukdar
,
P.
,
2020
, “
Drying Characteristics of Elephant Foot Yam and Performance Evaluation of Convective Dryer in Kinetically and Equilibrium Controlled Regime Under Varying Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051005
.
10.
Yamakage
,
K.
,
Yamada
,
T.
,
Takahashi
,
K.
,
Takaki
,
K.
,
Komuro
,
M.
,
Sasaki
,
K.
,
Aoki
,
H.
,
Kamagata
,
J.
,
Koide
,
S.
, and
Orikasa
,
T.
,
2021
, “
Impact of Pre-treatment With Pulsed Electric Field on Drying Rate and Changes in Spinach Quality During Hot Air Drying
,”
Innovative Food Sci. Emerg. Technol.
,
68
(
8
), p.
102615
.
11.
Luo
,
Z.-C.
,
Zhou
,
L.-G.
,
Zhu
,
Y.-W.
, and
Zhou
,
C.-Q.
,
2021
, “
Effects of Different Drying Methods on the Physicochemical Property and Edible Quality of Fermented Pyracantha fortuneana Fruit Powder
,”
Int. J. Food Sci. Technol.
,
56
(
2
), pp.
773
784
.
12.
Dolgunab
,
G.-K.
,
Aktaşc
,
M.
, and
Dolgunad
,
E.-C.
,
2021
, “
Infrared Convective Drying of Walnut With Energy–Exergy Perspective
,”
J. Food Eng.
,
306
(
6
), p.
110638
.
13.
Rashid
,
M.-T.
,
Jatoi
,
M.-A.
,
Safdar
,
B.
,
El-Mesery
,
H.-S.
,
Sarpong
,
F.
,
Ali
,
Z.
, and
Wali
,
A.
,
2019
, “
Multi-frequency Ultrasound and Sequential Infrared Drying on Drying Kinetics, Thermodynamic Properties, and Quality Assessment of Sweet Potatoes
,”
J. Food Process Eng.
,
42
(
5
), p.
e13127
.
14.
Rojas
,
M.-L.
,
Siveira
,
I.
, and
Augusto
,
P.-E.-D.
,
2019
, “
Improving the Infrared Drying and Rehydration of Potato Slices Using Simple Approaches: Perforations and Ethanol
,”
J. Food Process Eng.
,
42
(
5
), p.
e13089
.
15.
Sadeghi
,
E.
,
Asl
,
A. H.
, and
Movagharnejad
,
K.
,
2020
, “
Optimization and Quality Evaluation of Infrared-Dried Kiwifruit Slices
,”
Food Sci. Nutr.
,
8
(
2
), pp.
720
734
.
16.
Guiamba
,
I.
,
Svanberg
,
U.
, and
Ahrné
,
L.
,
2015
, “
Effect of Infrared Blanching on Enzyme Activity and Retention of β-Carotene and Vitamin C in Dried Mango
,”
J. Food Sci.
,
80
(
6
), pp.
1235
1242
.
17.
Nalawade
,
S.-A.
,
Sinha
,
A.
, and
Hebbar
,
H.-U.
,
2018
, “
Infrared Based Dry Blanching and Hybrid Drying of Bitter Gourd Slices: Process Efficiency Evaluation
,”
J. Food Process Eng.
,
41
(
4
), p.
e12672
.
18.
Zhang
,
B.
,
Qiu
,
Z.
,
Zhao
,
R.
,
Zheng
,
Z.
,
Lu
,
X.
, and
Qiao
,
X.
,
2021
, “
Effect of Blanching and Freezing on the Physical Properties, Bioactive Compounds, and Microstructure of Garlic (Allium sativum L.)
,”
J. Food Sci.
,
86
(
1
), pp.
31
40
.
19.
Huang
,
J.
,
Zhu
,
W.-X.
,
Liu
,
Y.-H.
, and
Luo
,
L.
,
2017
, “
Simulation and Application on Vacuum Far-Infrared Drying of Lily Bulb Based on Weibull Distribution Function
,”
Food Mach.
,
33
(
5
), pp.
71
76
.
20.
Li
,
Y.-L.
,
Ding
,
S.-H.
,
Gao
,
W.
,
Xie
,
Q.-T.
,
Xie
,
Q.-T.
, and
Li
,
G.-Y.
,
2018
, “
Effect of Blanching Method on Endogenous Browning-Related Enzymes and Microstructure of Lily Bulb
,”
Food Sci.
,
39
(
17
), pp.
53
60
.
21.
Ueibe
,
E.
,
Lemus-Mondaca
,
R.
,
Vega-Galvez
,
A.
,
Zamorano
,
M.
,
Quispe-Fuentes
,
I.
,
Pasten
,
A.
, and
Di Scala
,
K.
,
2014
, “
Influence of Process Temperature on Drying Kinetics, Physicochemical Properties and Antioxidant Capacity of the Olive-Waste Cake
,”
Food Chem.
,
147
(
6
), pp.
170
176
.
22.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Clarendon Press
,
Oxford
.
23.
Aral
,
S.
, and
Bese
,
A. V.
,
2016
, “
Convective Drying of Hawthorn Fruit (Crataegus spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity
,”
Food Chem.
,
210
(
1
), pp.
577
584
.
24.
Jeevarathinam
,
G.
,
Pandiselvam
,
R.
,
Pandiarajan
,
T.
,
Preetha
,
P.
,
Balakrishnan
,
M.
,
Thirupathi
,
V.
, and
Kothakota
,
A.
,
2021
, “
Infrared Assisted Hot Air Dryer for Turmeric Slices: Effect on Drying Rate and Quality Parameters
,”
LWT—Food Sci. Technol.
,
144
(
2
), p.
111258
.
25.
Doymaz
,
B.
,
2015
, “
Infrared Drying Kinetics and Quality Characteristics of Carrot Slices
,”
J. Food Process. Preserv.
,
39
(
6
), pp.
2738
2745
.
26.
Nachaisin
,
M.
,
Jamradloedluk
,
J.
, and
Niamnuy
,
C.
,
2016
, “
Application of Combined Far-Infrared Radiation and Air Convection for Drying of Instant Germinated Brown Rice
,”
J. Food Process Eng.
,
39
(
3
), pp.
306
318
.
27.
Puente-Diaz
,
L.
,
Ah-Hen
,
K.
,
Vega-Galvez
,
A.
,
Lemus-Mondaca
,
R.
, and
Di Scala
,
K.
,
2013
, “
Combined Infrared-Convective Drying of Murta (Ugni Molinae Turcz) Berries: Kinetic Modeling and Quality Assessment
,”
Dry. Technol.
,
31
(
3
), pp.
329
338
.
28.
Wang
,
L.-P.
,
Zhang
,
M.
,
Fang
,
Z.-X.
, and
Xu
,
B.-G.
,
2014
, “
Application of Intermediate-Wave Infrared Drying in Preparation of Mushroom Chewing Tablets
,”
Dry. Technol.
,
32
(
15
), pp.
1820
1827
.
29.
Lee
,
J. H.
, and
Hui
,
J. K.
,
2009
, “
Vacuum Drying Kinetics of Asian White Radish (Raphanus sativus L.) Slices
,”
LWT—Food Sci. Technol.
,
42
(
1
), pp.
180
186
.
30.
Bualuang
,
O.
,
Tirawanichakul
,
Y.
, and
Tirawanichakul
,
S.
,
2013
, “
Comparative Study Between Hot Air and Infrared Drying of Parboiled Rice: Kinetics and Qualities Aspects
,”
J. Food Process. Preserv.
,
37
(
6
), pp.
1119
1132
.
31.
Wang
,
Y.
,
Zhang
,
M.
,
Mujumdar
,
A. S.
, and
Chen
,
H.
,
2014
, “
Drying and Quality Characteristics of Shredded Squid in an Infrared-Assisted Convective Dryer
,”
Dry. Technol.
,
32
(
15
), pp.
1828
1839
.
32.
Liu
,
J.
,
Wang
,
R.-R.
,
Wang
,
X.-Y.
,
Yang
,
Z.
,
Zhang
,
Q.
,
Shan
,
Y.
, and
Ding
,
S.-H.
,
2019
, “
Effect of Blanching and Drying Temperatures on the Browning-Related Enzymes and Physicochemical Properties of Lily Bulb Flours
,”
J. Food Process. Preserv.
,
43
(
12
), p.
e14248
.
33.
Murata
,
M.
,
2020
, “
Browning and Pigmentation in Food Through the Maillard Reaction
,”
Glycoconjugate J.
,
38
(
3
), pp.
283
292
.
34.
Tamanna
,
N.
, and
Mahmood
,
N.
,
2015
, “
Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition
,”
Int. J. Food Sci.
,
2015
(
3
), pp.
1
6
.
35.
Khampakool
,
A.
,
Soisungwan
,
S.
, and
Park
,
S. H.
,
2019
, “
Potential Application of Infrared Assisted Freeze Drying (IRAFD) for Banana Snacks: Drying Kinetics, Energy Consumption, and Texture
,”
LWT—Food Sci. Technol.
,
99
(
2
), pp.
355
363
.
36.
Yan
,
J.-K.
,
Wu
,
L.-X.
,
Qiao
,
Z.-R.
,
Cai
,
W.-D.
, and
Ma
,
H.
,
2018
, “
Effect of Different Drying Methods on the Product Quality and Bioactive Polysaccharides of Bitter Gourd (Momordica charantia L.) Slices
,”
Food Chem.
,
271
(
1
), pp.
588
596
.
37.
Tsantili
,
E.
,
Konstantinidis
,
K.
,
Christopoulos
,
M. V.
, and
Roussos
,
P. A.
,
2011
, “
Total Phenolics and Flavonoids and Total Antioxidant Capacity in Pistachio (Pistachia vera L.) Nuts in Relation to Cultivars and Storage Conditions
,”
Sci. Hortic.
,
129
(
4
), pp.
694
701
.
38.
Nesrine
,
G.
,
Daoued
,
M.
,
Catherine
,
B.
,
Nabil
,
K.
, and
Nourhene
,
B.
,
2020
, “
Drying Characteristics of Lemon by-Product (Citrus limon. v. lunari): Effects of Drying Modes on Quality Attributes Kinetics
,”
Waste Biomass Valoriz.
,
11
(
1
), pp.
303
322
.
You do not currently have access to this content.