Abstract

Microchannel heat sink is an effective method in compact and faster heat transfer applications. This paper numerically investigates thermal and hydraulic characteristics of a porous microchannel heat sink (PMHS) using various nanofluids. The effect of porosity (γ = 0.32–0.60), inlet velocity (win = 0.5–1.5 m/s), and nanoparticle concentration (ϕ=0.0025 – 0.05) on thermal-hydraulic performance is systematically examined. The result shows a significant temperature increase (40 °C) of the coolant in the porous zone. The pressure drop reduces by 35% for γ = 0.32 compared to the non-porous counterpart, and this reduction of pressure significantly continues when γ further increases. The pressure drop with win is linear for PMHS with nanofluids, and the change in pressure drop is steeper for nanofluids compared to their base fluids. The average heat transfer coefficient increases about 2.5 times for PMHS, and a further increase of 6% in h¯ is predicted with the addition of nanoparticles. The average Nusselt number Nu¯ increases nonlinearly with Re for PMHS. The friction factor reduces by 50% when γ increases from 0.32 to 0.60, and the effect of nanofluid on friction factor is insignificant beyond the mass flowrate of 0.0004 kg/s. Whilst Cu and CuO nanoparticles help to dissipate the larger amount of heat from the microchannel, Al2O3 nanoparticle appears to have a detrimental effect on heat transfer. The thermal-hydraulic performance factor strongly depends on the nanoparticles, and it slightly decreases with the mass flowrate. The increase of nanoparticle concentration, in general, enhances both h¯ and ΔP linearly for the range considered.

References

1.
Lee
,
J.
, and
Mudawar
,
I.
,
2006
, “
Implementation of Microchannel Evaporation for High-Heat-Flux Refrigeration Cooling Applications
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
30
37
.
2.
Wei
,
X.
, and
Joshi
,
Y.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
60
66
.
3.
Chauhan
,
A.
,
Sammakia
,
B.
,
Afram
,
F. F.
,
Ghose
,
K.
,
Refai-Ahmed
,
G.
, and
Agonofer
,
D.
,
2013
, “
Solving Thermal Issues in a Three-Dimensional-Stacked-Quad-Core Processor by Microprocessor Floor Planning, Microchannel Cooling, and Insertion of Through-Silicon-Vias
,”
ASME J. Electron. Packag.
,
135
(
4
), p.
041006
.
4.
Hoque
,
M. J.
,
Gunay
,
A.
,
Stillwell
,
A.
,
Gurumukhi
,
Y.
,
Pilawa-Podgurski
,
R. C. N.
, and
Milijkovic
,
N.
,
2021
, “
Modular Heat Sinks for Enhanced Thermal Management of Electronics
,”
ASME J. Electron. Packag.
,
143
(
2
), p.
020903
.
5.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.
6.
Ravigururajan
,
T. S.
,
Cuta
,
J.
,
McDonald
,
C. E.
, and
Drost
,
M. K.
,
1996
, “
Single-Phase Flow Thermal Performance Characteristics of a Parallel-Micro-channel Heat Exchanger
,”
National Heat Transfer Conference: Vol. 7, ASME HTD Vol. 329
,
Houston, TX
,
Aug. 3–6
,
R.
Schmidt
,
A.
Anderson
,
S.
Mulay
,
S.
Kim
,
S.
Lee
,
D. C.
Price
,
M.
Kendal
,
L. E.
Frank
,
D. L.
Saums
, eds., pp.
157
166
.
7.
Rahman
,
M. M.
, and
Gui
,
F.
,
1993
, “
Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in a Chip Substrate
,”
Proceedings of the ASME International Electronics Packaging Conference
,
Binghamton, NY
, Sept. 29–Oct. 2,
ASME Publications
, Vol.
4
, pp.
685
692
.
8.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenbuilt
,
R.
,
2006
, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-devices
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
259
266
.
9.
Al-Nimr
,
M. A.
, and
Alkam
,
M.
,
1998
, “
A Modified Tubeless Solar Collector Partially Filled With Porous Substrate
,”
Renewable Energy
,
13
(
2
), pp.
165
173
.
10.
Alkam
,
M.
, and
Al-Nimr
,
M. A.
,
1999
, “
Solar Collectors With Tubes Partially Filled With Porous Substrates
,”
ASME J. Sol. Energy Eng.
,
121
(
1
), pp.
20
24
.
11.
Leng
,
C.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
52
57
.
12.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Ribeiro
,
J.-P.
,
Gruss
,
J.-A.
, and
Soriano
,
O.
,
2011
, “
Hydraulic and Heat Transfer Study of SiO2/Water Nanofluids in Horizontal Tubes With Imposed Wall Temperature Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
424
439
.
13.
Izadi
,
M.
,
Behzamehr
,
A.
, and
Jalali-Vahida
,
D.
,
2009
, “
Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2119
2129
.
14.
Michaelides
,
E. E. S.
,
2013
,
Heat and Mass Transfer in Particulate Suspensions
,
Springer-Verlag
,
New York
.
15.
Hatami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Thermal and Flow Analysis of Microchannel Heat Sink (MCHS) Cooled by Cu-Water Nanofluid Using Porous Media Approach and Least Square Method
,”
Energy Convers. Manag.
,
78
, pp.
347
358
.
16.
Wang
,
H.
,
Chen
,
Z.
, and
Gao
,
J.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.
,
107
, pp.
870
879
.
17.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
.
18.
Ji
,
Y.
,
Yuan
,
K.
, and
Chung
,
J. N.
,
2006
, “
Numerical Simulation of Wall Roughness on Gaseous Flow and Heat Transfer in a Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1329
1339
.
19.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
(
5
), pp.
832
842
.
20.
Zhao
,
C. Y.
, and
Lu
,
T. J.
,
2002
, “
Analysis of Microchannel Heat Sinks for Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4857
4869
.
21.
Goldburg
,
N.
,
1984
, “
“Narrow Channel Forced air Heat Sink
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
7
(
1
), pp.
154
159
.
22.
Mahalingam
,
M.
,
1985
, “
Thermal Management in Semiconductor Device Packaging
,”
Proc. IEEE
,
73
(
9
), pp.
1396
1404
.
23.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
24.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
25.
Alkam
,
M. K.
, and
Al-Nimr
,
M. A.
,
1999
, “
Improving the Performance of Double-Pipe Heat Exchangers by Using Porous Substrates
,”
Int. J. Heat Mass Transfer
,
42
(
19
), pp.
3609
3618
.
26.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous Microchannel Heat Sinks With Different Configuration Design
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.
27.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlets
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.
28.
Hung
,
T. C.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Enhancement of Microchannel Heat Sinks With Sintered Porous Media
,”
Numer. Heat Transfer, Part A
,
63
(
9
), pp.
666
686
.
29.
Ould-Amer
,
Y.
,
Chikh
,
S.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
,
1998
, “
Forced Convection Cooling Enhancement by Use of Porous Materials
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
251
258
.
30.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2009
, “
Sintered Porous Heat Sink for Cooling of High Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2289
2299
.
31.
Venugopal
,
G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2010
, “
Experimental Study of Mixed Convection Heat Transfer in a Vertical Duct Filled With Metallic Porous Structures
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
340
348
.
32.
Aguilar-Madera
,
C. G.
,
Valdés-Parada
,
F. J.
,
Goyeau
,
B.
, and
Ochoa-Tapia
,
J. A.
,
2011
, “
Convective Heat Transfer in a Channel Partially Filled With a Porous Medium
,”
Int. J. Therm. Sci
,.
50
(
8
), pp.
1355
1368
.
33.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2007
, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
512
523
.
34.
Chein
,
R.
, and
Huang
,
G.
,
2005
, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
3104
3114
.
35.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2006
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2457
2463
.
36.
Abdollahi
,
A.
,
Mohammed
,
H. A.
,
Vanaki
,
S. M.
,
Osia
,
A.
, and
Haghighi
,
M. R. G.
,
2017
, “
Fluid Flow and Heat Transfer of Nanofluids in Microchannel Heat Sink With V-Type Inlet/Outlet Arrangement
,”
Alexandria Eng. J.
,
56
(
1
), pp.
161
170
.
37.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
, and
Harting
,
J.
,
2011
, “
Eulerian–Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
107
116
.
38.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
39.
Yu
,
W.
,
France
,
D. M.
,
Smith
,
D. S.
,
Singh
,
D.
,
Timofeeva
,
E. V.
, and
Routbort
,
J. L.
,
2009
, “
Heat Transfer to a Silicon Carbide/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3606
3612
.
40.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
41.
Mahian
,
O.
,
Kolsi
,
L.
,
Amani
,
M.
,
Estellé
,
P.
,
Ahmadi
,
G.
,
Kleinstreur
,
C.
,
Marshal
,
J. S.
, et al
,
2019
, “
Recent Advances in Modeling and Simulation of Nanofluid Flows-Part I: Fundamental and Theory
,”
Phys. Rep.
,
790
, pp.
1
48
.
42.
Chen
,
C.-H.
, and
Ding
,
C.-Y.
,
2011
, “
Study on the Thermal Behavior and Cooling Performance of a Nanofluid-Cooled Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
378
384
.
43.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
44.
Öğüt
,
E. B.
,
2009
, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2063
2073
.
45.
Rimbault
,
B.
,
Nguyen
,
C. T.
, and
Galanis
,
N.
,
2014
, “
Experimental Investigation of CuO-Water Nanofluid Flow and Heat Transfer Inside a Microchannel Heat-Sink
,”
Int. J. Therm. Sci.
,
84
, pp.
275
292
.
You do not currently have access to this content.