Abstract

Solar thermal energy systems are future sustainable solutions for both domestic as well as industrial use. Solar thermal systems, operating in medium temperature range (373–673 K), require concentrated solar thermal heating (CSH). In this work, a comprehensive numerical tool is developed to design and study multipurpose on-sun CSH system. The model uses a combined Monte-Carlo ray tracing, finite difference method, and all heat transfer modes. The model is validated with in-house experiment, which demonstrates its predictive capability. Next, the tool is used to optimize the cavity receiver geometry and predict the performance of the optimized CSH system under different direct normal irradiance (DNI) conditions. A CSH system using Therminol D12 as heat transfer fluid (HTF) is presented. Therminol D12 HTF-based system is predicted to take longer time than the system using water as HTF, for heating water to a specified temperature because of the heat exchanger effectiveness. However, the designed CSH system using Therminol D12 can attain higher temperatures than water without pressurization and through the heat exchanger can be used as a multipurpose system suitable for cooking, laundry, sterilization, process industry, etc.

References

1.
Singh
,
R.
,
Lazarus
,
I. J.
, and
Souliotis
,
M.
,
2016
, “
Recent Developments in Integrated Collector Storage (ICS) Solar Water Heaters: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
270
298
.
2.
Giglio
,
T.
,
Santos
,
V.
, and
Lamberts
,
R.
,
2019
, “
Analyzing the Impact of Small Solar Water Heating Systems on Peak Demand and on Emissions in the Brazilian Context
,”
Renewable Energy
,
133
, pp.
1404
1413
.
3.
Ayompe
,
L.
, and
Duffy
,
A.
,
2013
, “
Analysis of the Thermal Performance of a Solar Water Heating System With Flat Plate Collectors in a Temperate Climate
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
447
454
.
4.
Zhou
,
F.
,
Ji
,
J.
,
Cai
,
J.
, and
Yu
,
B.
,
2017
, “
Experimental and Numerical Study of the Freezing Process of Flat-Plate Solar Collector
,”
Appl. Therm. Eng.
,
118
, pp.
773
784
.
5.
Naik
,
H.
,
Baredar
,
P.
, and
Kumar
,
A.
,
2017
, “
Medium Temperature Application of Concentrated Solar Thermal Technology: Indian Perspective
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
369
378
.
6.
Faddouli
,
A.
,
Labrim
,
H.
,
Fadili
,
S.
,
Habchi
,
A.
,
Hartiti
,
B.
,
Benaissa
,
M.
,
Hajji
,
M.
,
Ez-Zahraouy
,
H.
,
Ntsoenzok
,
E.
, and
Benyoussef
,
A.
,
2020
, “
Numerical Analysis and Performance Investigation of New Hybrid System Integrating Concentrated Solar Flat Plate Collector With a Thermoelectric Generator System
,”
Renewable Energy
,
147
(
1
), pp.
2077
2090
.
7.
Soni
,
V. K.
,
Shrivastava
,
R.
,
Untawale
,
S.
, and
Shrivastava
,
K.
,
2019
, “
Performance Analysis and Optimization of Fresnel Lens Concentrated Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031010
.
8.
Upadhyay
,
S.
,
Chandra
,
L.
, and
Sarkar
,
J.
,
2021
, “
A Generalized Nusselt Number Correlation for Nanofluids, and Look-Up Diagrams to Select a Heat Transfer Fluid for Medium Temperature Solar Thermal Applications
,”
Appl. Therm. Eng.
,
190
, p.
116469
.
9.
Verma
,
S. K.
,
Gupta
,
N. K.
, and
Rakshit
,
D.
,
2020
, “
A Comprehensive Analysis on Advances in Application of Solar Collectors Considering Design, Process and Working Fluid Parameters for Solar to Thermal Conversion
,”
Sol. Energy
,
208
, pp.
1114
1150
.
10.
El Moussaoui
,
N.
,
Talbi
,
S.
,
Atmane
,
I.
,
Kassmi
,
K.
,
Schwarzer
,
K.
,
Chayeb
,
H.
, and
Bachiri
,
N.
,
2020
, “
Feasibility of a New Design of a Parabolic Trough Solar Thermal Cooker (PSTC)
,”
Sol. Energy
,
201
, pp.
866
871
.
11.
Selvakumar
,
P.
,
Somasundaram
,
P.
, and
Thangavel
,
P.
,
2014
, “
Performance Study on Evacuated Tube Solar Collector Using Therminol D-12 As Heat Transfer Fluid Coupled With Parabolic Trough
,”
Energy Convers. Manage.
,
85
, pp.
505
510
.
12.
Yerdesh
,
Y.
,
Abdulina
,
Z.
,
Aliuly
,
A.
,
Belyayev
,
Y.
,
Mohanraj
,
M.
, and
Kaltayev
,
A.
,
2020
, “
Numerical Simulation on Solar Collector and Cascade Heat Pump Combi Water Heating Systems in Kazakhstan Climates
,”
Renewable Energy
,
145
, pp.
1222
1234
.
13.
El Fouas
,
C.
,
Hajji
,
B.
,
Gagliano
,
A.
,
Tina
,
G.
, and
Aneli
,
S.
,
2020
, “
Numerical Model and Experimental Validation of the Electrical and Thermal Performances of Photovoltaic/Thermal Plant
,”
Energy Convers. Manage.
,
220
, p.
112939
.
14.
AL-Khaffajy
,
M.
, and
Mossad
,
R.
,
2013
, “
Optimization of the Heat Exchanger in a Flat Plate Indirect Heating Integrated Collector Storage Solar Water Heating System
,”
Renewable Energy
,
57
, pp.
413
421
.
15.
Badiei
,
Z.
,
Eslami
,
M.
, and
Jafarpur
,
K.
,
2020
, “
Performance Improvements in Solar Flat Plate Collectors by Integrating With Phase Change Materials and Fins: A CFD Modeling
,”
Energy
,
192
, p.
116719
.
16.
Lima
,
J. B. A.
,
Prado
,
R. T.
, and
Taborianski
,
V. M.
,
2006
, “
Optimization of Tank and Flat-Plate Collector of Solar Water Heating System for Single-Family Households to Assure Economic Efficiency Through the TRNSYS Program
,”
Renewable Energy
,
31
(
10
), pp.
1581
1595
.
17.
Azzouzi
,
D.
,
Boumeddane
,
B.
, and
Abene
,
A.
,
2017
, “
Experimental and Analytical Thermal Analysis of Cylindrical Cavity Receiver for Solar Dish
,”
Renewable Energy
,
106
, pp.
111
121
.
18.
Stine
,
W.
, and
McDonald
,
C.
,
1989
, “
Cavity Receiver Convection Heat Loss
,”
Proceedings of the International Solar Energy Society, Solar World Congress
,
Kobe, Japan
, Vol.
1318
.
19.
Wu
,
S.-Y.
,
Guo
,
F.-H.
, and
Xiao
,
L.
,
2014
, “
Numerical Investigation on Combined Natural Convection and Radiation Heat Losses in One Side Open Cylindrical Cavity With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
71
, pp.
573
584
.
20.
Singh
,
P. L.
,
Sarviya
,
R.
, and
Bhagoria
,
J.
,
2010
, “
Heat Loss Study of Trapezoidal Cavity Absorbers for Linear Solar Concentrating Collector
,”
Energy Convers. Manage.
,
51
(
2
), pp.
329
337
.
21.
Balaji
,
C.
, and
Venkateshan
,
S.
,
1994
, “
Correlations for Free Convection and Surface Radiation in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
15
(
3
), pp.
249
251
.
22.
Mukesh
,
B. S.
,
Parella
,
R. T.
,
Mukhopadhyay
,
S.
, and
Chandra
,
L.
,
2020
, “Design and Development of a Concentrated Solar Water Heating System,”
Solar Energy. Energy, Environment, and Sustainability
,
Tyagi
,
H.
,
Chakraborty
,
P. R.
,
Powar
,
S.
, and
Agarwal
,
A. K.
, eds.
Springer Singapore
,
Singapore
, pp.
61
75
.
23.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
24.
Sleiti
,
A. K.
,
2020
, “
Heat Transfer Measurements of Polyalpha-Olefin-Boron Nitride Nanofluids for Thermal Management and Lubrication Applications
,”
Case Stud. Therm. Eng.
,
22
, p.
100776
.
25.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Mitchell
,
J. W.
,
2020
,
Fox and McDonald’s Introduction to Fluid Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Rogers
,
G.
, and
Mayhew
,
Y.
,
1964
, “
Heat Transfer and Pressure Loss in Helically Coiled Tubes With Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
7
(
11
), pp.
1207
1216
.
27.
Natarajan
,
S. K.
,
Reddy
,
K.
, and
Mallick
,
T. K.
,
2012
, “
Heat Loss Characteristics of Trapezoidal Cavity Receiver for Solar Linear Concentrating System
,”
Appl. Energy
,
93
, pp.
523
531
.
28.
Test
,
F. L.
,
Lessmann
,
R. C.
, and
Johary
,
A.
,
1981
, “
Heat Transfer During Wind Flow Over Rectangular Bodies in the Natural Environment
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
2
), pp.
262
267
.
29.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
San Francisco, CA
.
30.
Ellingwood
,
K.
,
Mohammadi
,
K.
, and
Powell
,
K.
,
2020
, “
A Novel Means to Flexibly Operate a Hybrid Concentrated Solar Power Plant and Improve Operation During Non-ideal Direct Normal Irradiation Conditions
,”
Energy. Convers. Manage.
,
203
, pp.
11227
5
.
31.
NASA Prediction of Worldwide Energy Resources
,” LARC, NASA.
32.
Elbeh
,
M. B.
, and
Sleiti
,
A. K.
,
2021
, “
Analysis and Optimization of Concentrated Solar Power Plant for Application in Arid Climate
,”
Energy Sci. Eng.
,
9
(
6
), pp.
784
797
.
33.
Touaba
,
O.
,
Cheikh
,
M. S. A.
,
Slimani
,
M. E.-A.
,
Bouraiou
,
A.
,
Ziane
,
A.
,
Necaibia
,
A.
, and
Harmim
,
A.
,
2020
, “
Experimental Investigation of Solar Water Heater Equipped With a Solar Collector Using Waste Oil As Absorber and Working Fluid
,”
Sol. Energy
,
199
, pp.
630
644
.
34.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang und Druckverlust in Rohrschlangen
,”
Chem. Ing. Tech.
,
39
(
13
), pp.
781
789
.
35.
Gnielinski
,
V.
,
1986
, “
Heat Transfer and Pressure Drop in Helically Coiled Tubes
,”
International Heat Transfer Conference 8
,
San Francisco, CA
,
Aug. 17–22
,
Begel House Inc.
, pp.
2847
2854
.
36.
Petukhov
,
B.
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
37.
Mishra
,
P.
, and
Gupta
,
S.
,
1979
, “
Momentum Transfer in Curved Pipes. 1. Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp.
130
137
.
38.
Fernández-Seara
,
J.
,
Diz
,
R.
,
Uhia
,
F. J.
,
Sieres
,
J.
, and
Dopazo
,
A.
,
2007
, “
Thermal Analysis of a Helically Coiled Tube in a Domestic Hot Water Storage Tank
,”
5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
South Africa
,
July 1–4, 2007
, HEFAT2007 Paper No. SJ5.
39.
Fernández-Seara
,
J.
,
Piñeiro-Pontevedra
,
C.
, and
Dopazo
,
J. A.
,
2014
, “
On the Performance of a Vertical Helical Coil Heat Exchanger: Numerical Model and Experimental Validation
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
680
689
.
You do not currently have access to this content.