Abstract

The present paper investigates the potential of loop heat pipe (LHP), with respect to technological merits and application niche, in automotive thermal management. Broadly, LHP design and applicability for hot spot cooling in electronics (local dissipation), and for heat transport over longer distances (remote dissipation) has been proposed and discussed in detail. The basic module in these applications includes loop heat pipe with different shapes and sizing factors. Two types of LHP designs have being tested and results discussed. The miniature version, with 10 mm thick and flat disk evaporator, for cooling electronic control unit (ECU) with 70 W chipset while keeping source temperature below 100 °C limit was evaluated. Two larger versions with cylindrical evaporator, 25 mm diameter and 150 mm length, and heat transfer distances of 250 mm and 1000 mm, respectively, were tested for power electronics and battery cooling, with more than 500 W transport capabilities in gravity field. In conclusions, loop heat pipes will provide an energy efficient passive thermal control solution for next-generation low emission automotive, particularly for electric vehicles (EVs), which have high-level electrifications and more definitive cooling requirements.

References

1.
Dunn
,
P. D.
, and
Reay
,
D. A.
,
1994
,
Heat Pipes
, 4th ed.,
Pergamon
,
London
.
2.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Wuttijumnong
,
V.
, and
Wu
,
X.
,
2004
, “
Practical Application of Heat Pipe and Vapor Chamber for Cooling High Performance Personal Computer
,”
Proceedings of the 13th International Heat Pipe Conference
,
Shanghai, China
,
Sept. 21–25
, pp.
23
30
.
3.
Kim
,
K. W.
,
Won
,
M. H.
,
Kim
,
J. W.
, and
Back
,
B. J.
,
2003
, “
Heat Pipe Cooling Technology for Desktop PC CPU
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1137
1144
.
4.
Moon
,
S. H.
,
Hwang
,
G.
,
Yun
,
H. G.
,
Choy
,
T. G.
, and
Kang
,
Y. I. I.
,
2002
, “
Improving Thermal Performance of Miniature Heat Pipe for Notebook PC Cooling
,”
Microelectron. Reliab.
,
42
(
1
), pp.
135
140
.
5.
Nguyen
,
T.
,
Mochizuki
,
M.
,
Mashiko
,
K.
,
Sauciuc
,
I.
, and
Boggs
,
R.
,
2000
, “
Advanced Cooling System Using Miniature Heat Pipes in Mobile PC
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
86
90
.
6.
Singh
,
R.
,
2019
, “
Vehicle Thermal Management Using Heat Pipes
,”
Proceedings of the IEEE CPMT Symposium Japan 2019
,
Kyoto, Japan
,
Nov. 18–20
.
7.
Singh
,
R.
,
Mochizuki
,
M.
,
Saito
,
Y.
,
Yamada
,
T.
,
Nguyen
,
T.
, and
Nguyen
,
T.
,
2016
, “
Heat Pipes Applications in Cooling Automotive Electronics
,”
Heat Pipe Sci. Technol. Int. J.
,
7
(
1–2
), pp.
57
69
.
8.
Singh
,
R.
,
Mochizuki
,
M.
,
Saito
,
Y.
,
Yamada
,
T.
,
Nguyen
,
T.
, and
Nguyen
,
T.
,
2016
, “
Cooling of LED Headlamp in Automotive by Heat Pipes
,”
Proceedings of Joint 18th IHPC and 12th IHPS
,
Jeju, Korea
,
June 12–16
.
9.
Smith
,
J.
,
Singh
,
R.
,
Hinterberger
,
M.
, and
Mochizuki
,
M.
,
2018
, “
Battery Thermal Management System for Electric Vehicle Using Heat Pipes
,”
Int. J. Therm. Sci.
,
134
, pp.
517
529
.
10.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Ahamed
,
S.
,
Singh
,
R.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2016
, “
Latest Trends in Heat Pipe Application
,”
Heat Pipe Sci. Technol. Int. J.
,
7
(
1–2
), pp.
1
15
.
11.
Vetrovec
,
J.
,
2011
, “
High-Performance Heat Sink for Interfacing Hybrid Electric Vehicles Inverters to Engine Coolant Loop
,”
Proceedings of the SAE 2011 World Congress & Exhibition
,
Apr. 12
, Conference Paper No. T11PFL-0459.
12.
Goswami
,
A.
,
2017
, “
Thermal Management of On-Board Chargers in E-Vehicles
,”
Electronic Cooling
, https://www.electronics-cooling.com/2017/08/thermal-management-board-chargers-e-vehicles/, Accessed August 24, 2017.
13.
Orr
,
B.
,
Singh
,
R.
,
Phan
,
T. L.
, and
Mochizuki
,
M.
,
2019
, “
Transient Modelling of an EV Inverter Heat Sink With PCM
,”
Front. Heat Mass Transfer
,
13
(
1
).
14.
Hendricks
,
T.
,
2002
, “
Heat Pipe/Two-Phase Flow Systems for Vehicle Passenger Cabin Cooling
,”
Proceedings of the Vehicle Thermal Management-PT-97
,
June 3
, SAE Technical Paper 2002-01-1970.
15.
Orr
,
B.
,
Akbarzadeh
,
A.
,
Mochizuki
,
M.
, and
Singh
,
R.
,
2016
, “
A Review of Car Waste Heat Recovery Systems Utilising Thermoelectric Generators and Heat Pipes
,”
Appl. Therm. Eng.
,
101
, pp.
490
495
.
16.
El-Sharkawy
,
A. E.
,
1998
, “
Potential Automotive Applications of Heat Pipes
,”
Proceedings of the International Congress and Exposition
,
Detroit, Michigan
,
Feb. 23–26
, SAE Paper No: 980060, e-ISSN: 2688-3627.
17.
Lai
,
Y.
,
Corderoa
,
N.
,
Barthelb
,
F.
,
Tebbe
,
F.
,
Kuhn
,
J.
,
Apfelbeck
,
R.
, and
Würtenberger
,
D.
,
2009
, “
Liquid Cooling of Bright LEDs for Automotive Applications
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1239
1244
.
18.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
635
657
.
19.
Bai
,
L.
,
Guo
,
J.
,
Lin
,
G.
,
He
,
J.
, and
Wen
,
D.
,
2015
, “
Steady-State Modeling and Analysis of a Loop Heat Pipe Under Gravity-Assisted Operation
,”
Appl. Therm. Eng.
,
83
(
25
), pp.
88
97
.
20.
Chernysheva
,
M. A.
, and
Maydanik
,
Y. F.
,
2019
, “
Simulation of Heat and Mass Transfer in a Cylindrical Evaporator of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
131
, pp.
442
449
.
21.
Esarte
,
J.
,
Blanco
,
J. M.
,
Bernardini
,
A.
, and
San-José
,
J. T.
,
2017
, “
Optimizing the Design of a Two-Phase Cooling System Loop Heat Pipe: Wick Manufacturing With the 3D Selective Laser Melting Printing Technique and Prototype Testing
,”
Appl. Therm. Eng.
,
111
(
25
), pp.
407
419
.
22.
Wu
,
S. C.
,
Gu
,
T. W.
,
Wang
,
D.
, and
Chen
,
Y. M.
,
2015
, “
Study of PTFE Wick Structure Applied to Loop Heat Pipe
,”
Appl. Therm. Eng.
,
81
, pp.
51
57
.
23.
Boo
,
J. H.
, and
Chung
,
W. B.
,
2005
, “
Thermal Performance of a Loop Heat Pipe Having Propylene Wick in a Flat Evaporator
,”
Proceedings of the HT’05 Conference
,
San Francisco, CA,
July 17–22
, pp.
473
478
, Paper No: HT2005-72714.
24.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
, and
Mochizuki
,
M.
,
2007
, “
Novel Design of a Miniature Loop Heat Pipe Evaporator for Electronic Cooling
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1445
1452
.
25.
Kobayashi
,
T.
,
Ogushi
,
T.
,
Haga
,
S.
,
Ozaki
,
E.
, and
Fujii
,
M.
,
2003
, “
Heat Transfer Performance of a Flexible Looped Heat Pipe Using R134a as a Working Fluid: Proposal for a Method to Predict the Maximum Heat Transfer Rate of FLHP
,”
Heat Transfer Asian Res.
,
32
(
4
), pp.
306
318
.
26.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2018
, “
Development and Tests of a Loop Heat Pipe With Several Separate Heat Sources
,”
Appl. Therm. Eng.
,
144
, pp.
165
169
.
27.
Li
,
J.
, and
Lv
,
L.
,
2015
, “
Performance Investigation of a Compact Loop Heat Pipe With Parallel Condensers
,”
Exp. Therm. Fluid. Sci.
,
62
, pp.
40
51
.
28.
Chernysheva
,
M. A.
, and
Maydanik
,
Y. F.
,
2017
, “
Effect of Liquid Filtration in a Wick on Thermal Processes in a Flat Disk-Shaped Evaporator of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
106
, pp.
222
231
.
29.
Nishikawara
,
M.
,
Nagano
,
H.
,
Mottet
,
L.
, and
Prat
,
M.
,
2015
, “
Formation of Unsaturated Regions in the Porous Wick of a Capillary Evaporator
,”
Int. J. Heat Mass Transfer
,
89
(
5–6
), pp.
588
595
.
30.
Chernysheva
,
M. A.
, and
Maydanik
,
Y. F.
,
2016
, “
Peculiarities of Heat Transfer in a Flat Disk-Shaped Evaporator of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
92
, pp.
1026
1033
.
31.
Wuttijumnong
,
V.
,
Singh
,
R.
,
Mochizuki
,
M.
,
Goto
,
K.
,
Nguyen
,
T.
,
Nguyen
,
T.
, and
Mashiko
,
K.
,
2012
, “
High-Performance Nickel Wick Development for Loop Heat Pipes
,”
Proceedings of 28th IEEE SEMI-THERM Symposium
,
San Jose, CA
,
Mar. 18–22
, pp.
52
57
.
32.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2018
, “
Operational Characteristics of a Miniature Loop Heat Pipe With Flat Evaporator
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1413
1562
.
33.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
Proceedings of the 29th International Conference on Environmental Systems
,
Denver, CO
,
July 12–15
, SAE Paper No. 1999-01-2007.
34.
Kaya
,
T.
, and
Ku
,
J.
,
2003
, “
Thermal Operational Characteristics of a Small Loop Heat Pipe
,”
J. Thermophys. Heat Transfer
,
17
(
4
), pp.
464
470
.
35.
Ku
,
J.
,
Ottenstein
,
L.
,
Kobel
,
M.
,
Rogers
,
P.
, and
Kaya
,
T.
,
2001
, “
Temperature Oscillations in Loop Heat Pipe Operation
,”
AIP Conf. Proc.
,
552
(
1
), pp.
255
262
.
36.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Mochizuki
,
M.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Kiyooka
,
F.
, and
Wuttijumnong
,
V.
,
2006
, “
Thermal Performance of Miniature Loop Heat Pipe Operating Under Different Heating Modes
,”
Proceedings of the ITherm 2006
,
San Diego, CA
,
May 30–June 2
, pp.
557
562
.
37.
Riehl
,
R. R.
, and
Dutra
,
T.
,
2005
, “
Development of an Experimental Loop Heat Pipe for Application in Future Space Missions
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
101
112
.
38.
Maydanik
,
Y. F.
,
Fershtater
,
Y. G.
, and
Pastukhov
,
V. G.
,
1992
, “
Development and Investigation of Two Phase Loops With High Pressure Capillary Pumps for Space Applications
,”
Proceedings of the Eighth International Heat Pipe Conference
,
Beijing, China
,
Sept. 14–18
.
39.
Shioga
,
T.
, and
Mizuno
,
Y.
,
2015
, “
Micro Loop Heat Pipe for Mobile Electronics Applications
,”
Proceedings of 31st SEMI-THERM Symposium, IEEE
,
San Jose, CA
,
Mar. 15–19
.
40.
Pastukhov
,
V. G.
,
Maydanik
,
Y. F.
, and
Vershinin
,
S. V.
,
2003
, “
Miniature Loop Heat Pipes for Electronic Cooling
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1125
1135
.
41.
Mochizuki
,
M.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Nguyen
,
T.
,
Wuttijumnong
,
V.
,
Horiuchi
,
Y.
,
Tacomkang
,
R.
,
Singh
,
R.
, and
Akbarzadeh
,
A.
,
2008
, “
Development of Miniature Loop Heat Pipes for the Thermal Control of Laptops
,”
Proceedings of Micro/Nanoscale Heat Transfer International Conference
,
Tainan, Taiwan,
Jan. 6–9
,
ASME
Paper No: MNHT2008-52088.
42.
Kiseev
,
V. M.
,
Nepomnyashy
,
A. S.
,
Gruzdova
,
N. L.
, and
Kim
,
K. S.
,
2003
, “
Miniature Loop Heat Pipes
,”
Proceedings of the Seventh International Heat Pipe Symposium
,
Jeju, South Korea
,
Oct. 12–16
.
43.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
,
2005
, “
Miniature Loop Heat Pipes—A Promising Means for Cooling Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
290
296
.
44.
Joung
,
W.
,
Yu
,
T.
, and
Lee
,
J.
,
2008
, “
Experimental Study on the Loop Heat Pipe With a Planar Bifacial Wick Structure
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1573
1581
.
45.
Mitomi
,
M.
, and
Nagano
,
H.
,
2014
, “
Long-Distance Loop Heat Pipe for Effective Utilization of Energy
,”
Int. J. Heat Mass Transfer
,
77
, pp.
777
784
.
46.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2008
, “
Thermal Performance of a Capillary Pumped Loop for Automotive Cooling
,”
Exp. Heat Transfer
,
21
(
4
), pp.
296
313
.
47.
Singh
,
R.
,
Guo
,
Z.
,
Nguyen
,
T.
,
Mochizuki
,
M.
,
Saito
,
Y.
,
Ohashi
,
M.
, and
Mashiko
,
K.
,
2012
, “
Loop Heat Pipe for Fuel Cell Cooling
,”
Proceedings of the 3rd International Forum on Heat Transfer
,
Nagasaki, Japan
,
Nov. 13–15
, Paper No. IFHT2012-169.
48.
Singh
,
R.
,
Mochizuki
,
M.
,
Saito
,
Y.
, and
Nguyen
,
T.
,
2013
, “
Loop Heat Pipe Development for Vehicle Thermal Management
,”
The 50th National Heat Transfer Symposium
,
Sendai, Japan
,
May 29–31
.
49.
Singh
,
R.
,
Nguyen
,
T.
, and
Mochizuki
,
M.
,
2014
, “
Capillary Evaporator Development and Qualification for Loop Heat Pipes
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
406
418
.
50.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Mochizuki
,
M.
, and
Riehl
,
R. R.
,
2007
, “
Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
42
49
.
51.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2010
, “
Thermal Potential of Flat Evaporator Miniature Loop Heat Pipes for Notebook Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
32
45
.
52.
Singh
,
R.
,
Mochizuki
,
M.
,
Yamada
,
T.
, and
Nguyen
,
T.
,
2020
, “
Cooling of LED Headlamp in Automotive by Heat Pipes
,”
Appl. Therm. Eng.
,
166
(
5
), p.
114733
.
53.
Singh
,
R.
,
Lapp
,
G.
,
Long
,
P. T.
,
Nguyen
,
T.
,
Horiuchi
,
Y.
,
Takahashi
,
M.
,
Saito
,
Y.
,
Mochizuki
,
M.
,
Mausolf
,
K.
, and
Busse
,
K.
,
2018
, “
Battery Cooling Architectures for Electric Vehicles Using Heat Pipes
,”
Joint 19th IHPC and 13th IHPS
,
Pisa, Italy
,
June 10–14
.
You do not currently have access to this content.