Abstract

Closed wet cooling tower (CWCT) is an indirect-contact evaporative cooler, in which ambient air, spray water, and process water function together. In order to improve its thermal performance, a new heat transfer strategy is proposed. The influence of fan frequency, spray density, and processing water flow on the thermal performance of CWCT is obtained by combining theoretical and experimental research. By fitting the experimental data, the empirical formula of heat and mass transfer coefficient is obtained. The research results can be used to improve the cooling efficiency and enhance the heat and mass transfer of CWCT.

References

1.
Li
,
H. W.
,
Duan
,
W. B.
,
Wang
,
S. B.
,
Zhang
,
X. L.
,
Sun
,
B.
, and
Hong
,
W. P.
,
2018
, “
Numerical Simulation Study on Different Spray Rates of Three-Area Water Distribution in Wet Cooling Tower of Fossil-Fuel Power Station
,”
Appl. Therm. Eng.
,
130
(
5
), pp.
1558
1567
.
2.
Song
,
P. Y.
,
Wang
,
B. L.
,
Li
,
X. T.
, and
Shi
,
W. X.
,
2018
, “
Experimental Research on Heat and Mass Transfer Characteristics of Cross-Flow Closed-Type Heat-Source Tower
,”
Appl. Therm. Eng.
,
135
(
5
), pp.
289
303
.
3.
Qasim
,
S. M.
, and
Hayder
,
M. J.
,
2017
, “
Parametric Study of Closed wet Cooling Tower Thermal Performance
,”
Mater. Sci. Eng.
,
227
(
1
), pp.
23
28
.
4.
Rahmati
,
M.
,
Alavi
,
S. R.
, and
Tavakoli
,
M. R.
,
2018
, “
Investigation of Heat Transfer in Mechanical Draft Wet Cooling Towers Using Infrared Thermal Images: An Experimental Study
,”
Int. J. Refrig.
,
88
(
5
), pp.
229
238
.
5.
Zhou
,
Y.
,
Zhang
,
P.
,
Zhao
,
J.
,
Yang
,
H.
, and
Bai
,
Y.
,
2019
, “
Experimental Study on Performance of a Closed Wet Cooling Tower for Air Wet-Bulb Temperature Near 0°C
,”
J. Therm. Sci.
,
28
(
5
), pp.
1015
1023
.
6.
Najim
,
A. J.
,
2011
, “
Theoretical and Experimental Study on Thermal Performance of Closed Wet Cooling Tower
,”
ASME J. Eng.
,
17
(
1
), pp.
1622
1632
.
7.
Tomás
,
A. C. C.
,
Araujo
,
S. D. O.
,
Paes
,
M. D.
,
Primo
,
A. R. M.
,
Da Costa
,
J. A. P.
, and
Ochoa
,
A. A. V.
,
2018
, “
Experimental Analysis of the Performance of New Alternative Materials for Cooling Tower Fill
,”
Appl. Therm. Eng.
,
144
(
5
), pp.
444
456
.
8.
Xie
,
X. C.
,
Zhang
,
Y.
,
He
,
C.
,
Xu
,
T.
,
Zhang
,
B. J.
, and
Chen
,
Q. L.
,
2017
, “
Bench-Scale Experimental Study on the Heat Transfer Intensification of a Closed Wet Cooling Tower Using Aluminum Oxide Nanofluids
,”
Ind. Eng. Chem. Res.
,
56
(
20
), pp.
6022
6034
.
9.
Zhu
,
Q.
,
Zhang
,
B.
,
Chen
,
Q.
,
He
,
C.
, and
Yu
,
H.
,
2020
, “
Model Reductions for Multiscale Stochastic Optimization of Cooling Water System Equipped With Closed Wet Cooling Towers
,”
Chem. Eng. Sci.
,
224
(
5
), p.
115773
.
10.
Yang
,
Y. H.
,
Narayanan
,
V.
,
Pistochini
,
T.
, and
Ross
,
D.
,
2021
, “
An Experimentally Validated Model of a Cross-Flow Sub-wet Bulb Evaporative Chiller
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021006
.
11.
Liao
,
J.
,
Xie
,
X.
,
Nemer
,
H.
,
Claridge
,
D. E.
, and
Culp
,
C. H.
,
2019
, “
A Simplified Methodology to Optimize the Cooling Tower Approach Temperature Control Schedule in a Cooling System
,”
Energy Convers. Manage.
,
199
(
5
), p.
111950
.
12.
Yan
,
J.
,
Wang
,
W.
,
Chen
,
L.
,
Yang
,
L.
, and
Du
,
X.
,
2020
, “
Enhancement of Thermo-flow Performances by Windbreakers for Two-Tower Indirect Dry Cooling System
,”
J. Therm. Sci.
,
29
(
3
), pp.
676
686
.
13.
Merkel
,
F.
,
1925
, “
Verdunstungskühlung
,”
VDI-Zeitchrift
,
70
(
5
), pp.
123
128
.
14.
Reuter
,
H. C. R.
, and
Kröger
,
D. G.
,
2012
, “
Computational Models for Predicting Cooling Tower Fill Performance in Cross-counterflow Configuration
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
2
), p.
021003
.
15.
Xie
,
X. C.
,
Liu
,
H.
,
He
,
C.
,
Zhang
,
B. J.
,
Chen
,
Q. L.
, and
Pan
,
M.
,
2019
, “
Deciphering the Heat and Mass Transfer Behaviors of Staggered Tube Bundles in a Closed Wet Cooling Tower Using a 3-D VOF Model
,”
Appl. Therm. Eng.
,
161
(
5
), p.
114202
.
16.
Ayoub
,
A.
,
Gjorgiev
,
B.
, and
Sansavini
,
G.
,
2018
, “
Cooling Towers Performance in a Changing Climate: Techno-Economic Modeling and Design Optimization
,”
Energy
,
160
(
5
), pp.
1133
1143
.
17.
Keshtkar
,
M. M.
,
2018
, “
Performance Analysis of a Counter Flow Wet Cooling Tower and Selection of Optimum Operative Condition by MCDM-TOPSIS Method
,”
Appl. Therm. Eng.
,
114
(
5
), pp.
776
784
.
18.
Wang
,
Y. P.
,
Wang
,
L. Y.
,
Huang
,
Q. W.
, and
Cui
,
Y.
,
2016
, “
Experimental and Theoretical Investigation of Cross-flow Heat Transfer Equipment for Air Energy High Efficient Utilization
,”
Appl. Therm. Eng.
,
98
(
5
), pp.
1231
1240
.
19.
Zhang
,
F.
,
Bock
,
J.
,
Jacobi
,
A. M.
, and
Wu
,
H.
,
2014
, “
Simultaneous Heat and Mass Transfer to Air From a Compact Heat Exchanger With Water Spray Precooling and Surface Deluge Cooling
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
528
540
.
20.
Mansour
,
M. K.
, and
Hassab
,
M. A.
,
2016
, “
Novel Approach of Thermal Modeling of Partially Dry–Wet Chilled Water Cooling Coil Under Unit and Nonunit Lewis Number Conditions
,”
Numer. Heat Transfer Part B-Fundam.
,
5
(
5
), pp.
1
18
.
21.
Mansour
,
M. K.
,
2016
, “
Practical Effectiveness-NTU Model for Cooling and Dehumidifying Coil With Non-unit Lewis Factor
,”
Appl. Therm. Eng.
,
100
(
5
), pp.
1111
11118
.
22.
Mofat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
23.
Parker
,
R. O.
, and
Treybal
,
R. E.
,
1962
, “
The Heat Mass Transfer Characteristics of Evaporative Coolers
,”
Chem. Eng. Prog. Sym. Ser.
,
57
(
5
), pp.
138
149
.
24.
Heyns
,
J. A.
, and
Kröger
,
D. G.
,
2010
, “
Experimental Investigation Into the Thermal-Flow Performance Characteristics of an Evaporative Cooler
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
492
498
.
25.
Chen
,
H.
,
Sun
,
Z.
,
Song
,
X.
, and
Yu
,
J.
,
2014
, “
Key Parameter Prediction and Validation for a Pilot-Scale Rotating-Disk Contactor by CFD–PBM Simulation
,”
Ind. Eng. Chem. Res.
,
53
(
51
), pp.
20013
20023
.
You do not currently have access to this content.