Abstract

The present investigation accentuates the impact of Undi biodiesel blended diesel on combustion, performance, and exhaust fume profiles of a single-cylinder, four-stroke diesel engine. Five Undi biodiesel-diesel blends were prepared and tested at four variable loads over a constant speed of 1500 (±10) rpm. The Undi biodiesel incorporation to diesel notably improved the in-cylinder pressure and heat release rate (HRR) of the engine. The higher amount of Undi biodiesel addition enhanced the brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) of the engine. In addition, the Undi biodiesel facilitated the reduction of the major pollutants, such as unburned hydrocarbon (UHC), carbon monoxide, and particulate matter (PM) emissions with slightly higher oxides of nitrogen emissions of the engine. To this end, a trade-off study was introduced to locate the favorable diesel engine operating conditions under Undi biodiesel-diesel strategies. The optimal results of the engine operation were found to be 32.65% of brake thermal efficiency, 1.21 g/kWh of brake specific cumulated oxides of nitrogen and unburned hydrocarbon, 0.94 g/kWh of brake specific carbon monoxide (BSCO), and 0.32 g/kWh of brake specific particulate matter (BSPM) for 50% (by volume) Undi biodiesel blend at 5.6 bar brake mean effective pressure (BMEP) with a relative closeness value of 0.978, which brings up the pertinence of the trade-off study in diesel engine platforms.

References

1.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
2.
Bhowmik
,
S.
,
Panua
,
R.
,
Ghosh
,
S. K.
,
Debroy
,
D.
, and
Paul
,
A.
,
2018
, “
A Comparative Study of Artificial Intelligence Based Models to Predict Performance and Emission Characteristics of a Single Cylinder Diesel Engine Fueled With Diesosenol
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041004
.
3.
Bhowmik
,
S.
,
Panua
,
R.
,
Ghosh
,
S. K.
,
Paul
,
A.
, and
Debroy
,
D.
,
2018
, “
Prediction of Performance and Exhaust Emissions of Diesel Engine Fuelled With Adulterated Diesel: An Artificial Neural Network Assisted Fuzzy-Based Topology Optimization
,”
Energy Environ.
,
29
(
8
), pp.
1413
1437
.
4.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112201
.
5.
Chauhan
,
B. S.
,
Kumar
,
N.
,
Jun
,
Y. D.
, and
Lee
,
K. B.
,
2010
, “
Performance and Emission Study of Preheated Jatropha Oil on Medium Capacity Diesel Engine
,”
Energy
,
35
(
6
), pp.
2484
2492
.
6.
Paul
,
A.
,
Panua
,
R.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2014
, “
Effect of Compressed Natural Gas Dual Fuel Operation With Diesel and Pongamia pinnata Methyl Ester (PPME) as Pilot Fuels on Performance and Emission Characteristics of a CI (Compression Ignition) Engine
,”
Energy
,
68
, pp.
495
509
.
7.
Ferreira
,
V. P.
,
Martins
,
J.
,
Torres
,
E. A.
,
Pepe
,
I. M.
, and
Souza
,
J. M. S. R. D.
,
2013
, “
Performance and Emissions Analysis of Additional Ethanol Injection on a Diesel Engine Powered With a Blend of Diesel-Biodiesel
,”
Energy Sustainable Dev.
,
17
(
6
), pp.
649
657
.
8.
Saravanan
,
A. P.
,
Mathimani
,
T.
,
Deviram
,
G.
,
Rajendran
,
K.
, and
Pugazhendhi
,
A.
,
2018
, “
Biofuel Policy in India: A Review of Policy Barriers in Sustainable Marketing of Biofuel
,”
J. Cleaner Prod.
,
193
, pp.
734
747
.
9.
Rashedul
,
H. K.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Ashraful
,
A. M.
,
Ashrafur Rahman
,
S. M.
, and
Shahir
,
S. A.
,
2014
, “
The Effect of Additives on Properties, Performance and Emission of Biodiesel Fuelled Compression Ignition Engine
,”
Energy Convers. Manage.
,
88
, pp.
348
364
.
10.
Bhuiya
,
M. M. K.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
,
Ashwath
,
N.
,
Azad
,
A. K.
, and
Hazrat
,
M. A.
,
2014
, “
Second Generation Biodiesel: Potential Alternative to-Edible Oil-Derived Biodiesel
,”
Energy Procedia
,
61
, pp.
1969
1972
.
11.
Sharma
,
Y. C.
, and
Singh
,
V.
,
2017
, “
Microalgal Biodiesel: A Possible Solution for India’s Energy Security
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
72
88
.
12.
Silitonga
,
A. S.
,
Mahlia
,
T. M. I.
,
Ong
,
H. C.
,
Riayatsyah
,
T. M. I.
,
Kusumo
,
F.
,
Ibrahim
,
H.
,
Dharma
,
S.
, and
Gumilang
,
D.
,
2017
, “
A Comparative Study of Biodiesel Production Methods for Reutealistrisperma Biodiesel
,”
Energy Sources Part A: Recovery Util. Environ. Effects
,
39
(
20
), pp.
2006
2014
.
13.
Damanik
,
N.
,
Ong
,
H. C.
,
Chong
,
W. T.
, and
Silitonga
,
A. S.
,
2017
, “
Biodiesel Production From Calophyllum inophyllum—Palm Mixed Oil
,”
Energy Sources Part A Recovery Util. Environ. Effects
,
39
(
12
), pp.
1283
1289
.
14.
Arumugam
,
A.
, and
Ponnusami
,
V.
,
2018
, “
Biodiesel Production From Calophyllum inophyllum Oil a Potential Non-Edible Feedstock: An Overview
,”
Renewable Energy
,
131
, pp.
459
471
.
15.
Belagur
,
V. K.
, and
Chitimi
,
V. R.
,
2013
, “
Few Physical, Chemical and Fuel Related Properties of Calophyllum inophyllum Linn (Honne) Oil and Its Blends With Diesel Fuel for Their Use in Diesel Engine
,”
Fuel
,
109
, pp.
356
361
.
16.
Jain
,
M.
,
Chandrakant
,
U.
,
Orsat
,
V.
, and
Raghavan
,
V.
,
2018
, “
A Review on Assessment of Biodiesel Production Methodologies From Calophyllum inophyllum Seed Oil
,”
Ind. Crops Prod.
,
114
, pp.
28
44
.
17.
Ong
,
H. C.
,
Masjuki
,
H. H.
,
Mahlia
,
T. M. I.
,
Silitonga
,
A. S.
,
Chong
,
W. T.
, and
Leong
,
K. Y.
,
2014
, “
Optimization of Biodiesel Production and Engine Performance From High Free Fatty Acid Calophyllum inophyllum Oil in CI Diesel Engine
,”
Energy Convers. Manage.
,
81
, pp.
30
40
.
18.
Sahoo
,
P. K.
, and
Das
,
L. M.
,
2009
, “
Combustion Analysis of Jatropha, Karanja and Polanga Based Biodiesel as Fuel in a Diesel Engine
,”
Fuel
,
88
(
6
), pp.
994
999
.
19.
Monirul
,
I. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Mosarof
,
M. H.
,
Zulkifli
,
N. W.
,
Teoh
,
Y. H.
, and
How
,
H. G.
,
2016
, “
Assessment of Performance, Emission and Combustion Characteristics of Palm, Jatropha and Calophyllum inophyllum Biodiesel Blends
,”
Fuel
,
181
, pp.
985
995
.
20.
Shehata
,
M. S.
,
2013
, “
Emissions, Performance and Cylinder Pressure of Diesel Engine Fuelled by Biodiesel Fuel
,”
Fuel
,
112
, pp.
513
522
.
21.
Dhar
,
A.
, and
Agarwal
,
A. K.
,
2014
, “
Performance, Emissions and Combustion Characteristics of Karanja Biodiesel in a Transportation Engine
,”
Fuel
,
119
, pp.
70
80
.
22.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Gupta
,
J. G.
,
Kim
,
W. I.
,
Choi
,
K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2015
, “
Effect of Fuel Injection Pressure and Injection Timing of Karanja Biodiesel Blends on Fuel Spray, Engine Performance, Emissions and Combustion Characteristics
,”
Energy Convers. Manage.
,
91
, pp.
302
314
.
23.
Paul
,
A.
,
Panua
,
R.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
Effect of Diesel–Ethanol–PPME (Pongamia pinnata Methyl Ester) Blends as Pilot Fuel on CNG Dual-Fuel Operation of a CI Engine: A Performance-Emission Trade-Off Study
,”
Energy Fuels
,
29
(
4
), pp.
2394
2407
.
24.
Paul
,
A.
,
Panua
,
R.
,
Debroy
,
D.
, and
Kumar Bose
,
P.
,
2016
, “
A Performance Emission Trade Off Study of a CI Engine Fueled by Compressed Natural Gas (CNG)/Diesel–Ethanol-PPME Blend Combination
,”
Environ. Prog. Sustainable Energy
,
35
(
2
), pp.
517
530
.
25.
Ashok
,
B.
,
Nanthagopal
,
K.
,
Raj
,
R. T. K.
,
Bhasker
,
J. P.
, and
Vignesh
,
D. S.
,
2017
, “
Influence of Injection Timing and Exhaust gas Recirculation of a Calophyllum inophyllum Methyl Ester Fuelled CI Engine
,”
Fuel Process. Technol.
,
167
, pp.
18
30
.
26.
Paul
,
A.
,
Panua
,
R.
, and
Debroy
,
D.
,
2017
, “
An Experimental Study of Combustion, Performance, Exergy and Emission Characteristics of a CI Engine Fueled by Diesel-Ethanol-Biodiesel Blends
,”
Energy
,
141
, pp.
839
852
.
27.
Nanthagopal
,
K.
,
Ashok
,
B.
,
Garnepudi
,
R. S.
,
Tarun
,
K. R.
, and
Dhinesh
,
B.
,
2019
, “
Investigation on Diethyl Ether as an Additive With Calophyllum inophyllum Biodiesel for CI Engine Application
,”
Energy Convers. Manage.
,
179
, pp.
104
113
.
28.
El-Adawy
,
M.
,
El-kasaby
,
M.
, and
Eldrainy
,
Y. A.
,
2018
, “
Performance Characteristics of a Supercharged Variable Compression Ratio Diesel Engine Fueled by Biodiesel Blends
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3473
3482
.
29.
Dubey
,
P.
, and
Gupta
,
R.
,
2018
, “
Influences of Dual Bio-Fuel (Jatropha Biodiesel and Turpentine Oil) on Single Cylinder Variable Comp. Ratio Diesel Engine
,”
Renewable Energy
,
115
, pp.
1294
1302
.
30.
Kataria
,
J.
,
Mohapatra
,
S. K.
, and
Kundu
,
K.
,
2019
, “
Biodiesel Production From Waste Cooking Oil Using Heterogeneous Catalysts and Its Operational Characteristics on Variable Compression Ratio CI Engine
,”
J. Energy Inst.
,
92
(
2
), pp.
275
287
.
31.
How
,
H. G.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Teoh
,
Y. H.
, and
Chuah
,
H. G.
,
2018
, “
Effect of Calophyllum inophyllum Biodiesel-Diesel Blends on Combustion, Performance, Exhaust Particulate Matter and Gaseous Emissions in a Multi-Cylinder Diesel Engine
,”
Fuel
,
227
, pp.
154
164
.
32.
Dhole
,
A. E.
,
Yarasu
,
R. B.
, and
Lata
,
D. B.
,
2016
, “
Investigations on the Combustion Duration and Ignition Delay Period of a Dual Fuel Diesel Engine With Hydrogen and Producer Gas as Secondary Fuels
,”
Appl. Therm. Eng.
,
107
, pp.
524
532
.
33.
Sajjad
,
H.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Arbab
,
M. I.
,
Imtenan
,
S.
, and
Ashraful
,
A. M.
,
2015
, “
Influence of Gas-to-Liquid (GTL) Fuel in the Blends of Calophyllum inophyllum Biodiesel and Diesel: An Analysis of Combustion–Performance–Emission Characteristics
,”
Energy Convers. Manage.
,
97
, pp.
42
52
.
34.
Bhowmik
,
S.
,
Paul
,
A.
,
Panua
,
R.
,
Ghosh
,
S. K.
, and
Debroy
,
D.
,
2019
, “
Artificial Intelligence Based Gene Expression Programming (GEP) Model Prediction of Diesel Engine Performances and Exhaust Emissions Under Diesosenol Fuel Strategies
,”
Fuel
,
235
, pp.
317
325
.
35.
Bhowmik
,
S.
,
Paul
,
A.
,
Panua
,
R.
,
Ghosh
,
S. K.
, and
Debroy
,
D.
,
2018
, “
Performance-Exhaust Emission Prediction of Diesosenol Fueled Diesel Engine: An ANN Coupled MORSM Based Optimization
,”
Energy
,
153
, pp.
212
222
.
36.
Dinh
,
L. T. T.
,
Guo
,
Y.
, and
Mannan
,
M. S.
,
2009
, “
Sustainability Evaluation of Biodiesel Production Using Multicriteria Decision-Making
,”
Environ. Prog. Sustainable Energy
,
28
(
1
), pp.
38
46
.
37.
Tzeng
,
G. H.
,
Lin
,
C. W.
, and
Opricovic
,
S.
,
2005
, “
Multi-criteria Analysis of Alternative-Fuel Buses for Public Transportation
,”
Energy Policy
,
33
(
11
), pp.
1373
1383
.
38.
Hoseinpour
,
M.
,
Sadrnia
,
H.
,
Tabasizadeh
,
M.
, and
Ghobadian
,
B.
,
2018
, “
Evaluation of the Effect of Gasoline Fumigation on Performance and Emission Characteristics of a Diesel Engine Fueled With B20 Using an Experimental Investigation and TOPSIS Method
,”
Fuel
,
223
, pp.
277
285
.
39.
Deb
,
M.
,
Debbarma
,
B.
,
Majumder
,
A.
, and
Banerjee
,
R.
,
2016
, “
Performance–Emission Optimization of a Diesel-Hydrogen Dual Fuel Operation: A NSGA II Coupled TOPSIS MADM Approach
,”
Energy
,
117
, pp.
281
290
.
40.
Sakthivel
,
G.
,
Ilangkumaran
,
M.
,
Nagarajan
,
G.
,
Priyadharshini
,
G. V.
,
Kumar
,
S. D.
,
Kumar
,
S. S.
,
Suresh
,
K. S.
,
Selvan
,
G. T.
, and
Thilakavel
,
T.
,
2014
, “
Multi-Criteria Decision Modelling Approach for Biodiesel Blend Selection Based on GRA–TOPSIS Analysis
,”
Int. J. Ambient Energy
,
35
(
3
), pp.
139
154
.
41.
Sakthivel
,
G.
,
Ilangkumaran
,
M.
, and
Gaikwad
,
A.
,
2015
, “
A Hybrid Multi-Criteria Decision Modeling Approach for the Best Biodiesel Blend Selection Based on ANP-TOPSIS Analysis
,”
Ain Shams Eng. J.
,
6
(
1
), pp.
239
256
.
42.
Madane
,
P. A.
,
Bhowmik
,
S.
, and
Panua
,
R.
,
2019
, “
Hybrid Taguchi-Fuzzy-Based Performance-Exhaust Emission Trade-Off Study of Variable Compression Ratio Diesel Engine Fueled With Undi-Diesel Blends
,”
Environ. Prog. Sustainable Energy
,
39
(
2
), pp.
1
16
.
43.
Sanli
,
A.
,
Ozsezen
,
A. N.
,
Kilicaslan
,
I.
, and
Canakci
,
M.
,
2008
, “
The Influence of Engine Speed and Load on the Heat Transfer Between Gases and In-Cylinder Walls at Fired and Motored Conditions of an IDI Diesel Engine
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1395
1404
.
You do not currently have access to this content.