Abstract

The thermal environment of the power cabin and high-temperature exhaust gas seriously affect the performance and survivability of the armored vehicle on the battlefield. In order to improve the hostile thermal environment of the enclosed power cabin and inhibit the infrared characteristics of exhaust gas, this paper puts forward a multistage connected ventilation cooling structure based on the unique structural characteristics of the armored vehicle. The structure utilizes the rotating action of the fans to introduce the cold air into the power cabin, volute, and smoke exhaust pipe in turn. The effects of the multistage connected structure on the temperature field and exhaust infrared detection power of the armored vehicle were studied by numerical simulation. It was indicated that the multistage connected ventilation cooling structure can effectively improve the thermal environment of the armored vehicle cabin by about 15.18% and reduce the infrared detection power of exhaust gas by about 11.35%. This paper is of great significance for studying the cooling of the power cabin and the design of armored vehicle’s infrared stealth.

References

1.
Rao
,
D. N.
,
Bhatti
,
S. K.
,
Kumar
,
S. R.
, and
Kumar
,
I. N.
,
2007
, “
CFD Analysis of Axial Flow Fans for Radiator Cooling in Automobile Engines
,” SAE Technical Paper No. 2007-01-4262.
2.
Yang
,
J.
,
Xing
,
W.
, and
Fan
,
H. F.
,
2013
, “
CFD Optimization Analysis of a Cooling Fan for Mining Dump Truck
,”
Appl. Mech. Mater.
,
365–366
, pp.
388
394
.
3.
Wu
,
Y.
,
Guo
,
J.
,
Hu
,
L.
, and
Luo
,
R.
,
2016
, “
Simulation and Test Research for the Multi-Structure of Automotive Louvered Fins Heat Exchangers
,”
Sci. Technol. Eng.
,
16
(
11
), pp.
59
64
.
4.
Chen
,
J.
,
Wang
,
D.
, and
Zheng
,
L.
,
2001
, “
Experimental Study of Operating Performance of a Tube-and-Fin Radiator for Vehicles
,”
Proc. Inst. Mech. Eng. Part D-J. Automob. Eng.
,
215
(
8
), pp.
911
918
.
5.
Liu
,
C.
,
Duan
,
M.
,
Mo
,
Y.
,
Zhang
,
R.
, and
Lu
,
L.
,
2018
, “
Influence and Optimization of Intake Air in Engine Front Compartment Based on a Certain Vehicle Model
,”
J. Wuhan Univ. Technol. (Transp. Sci. Eng.)
,
42
(
5
), pp.
47
50
.
6.
Rugh
,
J. P.
,
Chaney
,
L.
,
Lustbader
,
J.
,
Meyer
,
J.
,
Rustagi
,
M.
,
Olson
,
K.
, and
Kogler
,
R.
,
2007
, “
Reduction in Vehicle Temperatures and Fuel Use From Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing
,” SAE Technical Paper No. 2007-01-1194.
7.
Saidur
,
R.
,
Masjuki
,
H. H.
, and
Hasanuzzaman
,
M.
,
2009
, “
Performance of an Improved Solar Car Ventilator
,”
Int. J. Mech. Mater. Eng.
,
4
(
1
), pp.
24
34
.
8.
Rugh
,
J.
, and
Farrington
,
R.
,
2008
, “
Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results
,” NREL No. TP-540-42454.
9.
Robertson
,
D. B.
,
Smith
,
D. E.
, and
Laramee
,
R. M.
,
2016
, “
Infrared Suppressing Exhaust System
,” US Patent No. 9334060 B2.
10.
Anavilla
,
M. V. S. N.
,
Kambagowni
,
S. V.
, and
Vepakomma
,
R. B.
,
2019
, “
Design and Validation of Diesel Engine Infrared Signature Suppression Devices for Naval Ships
,”
J. Inst. Eng. (India): Ser. C
,
100
(
5
), pp.
717
727
.
11.
Tang
,
S.
,
Xu
,
F.
, and
Chen
,
Z.
,
2019
, “
Simulation of the Infrared Signature Suppression of Diesel Exhaust Under Water
,”
Ship Sci. Technol.
,
41
(
2
), pp.
101
106
.
12.
Wang
,
X.
, and
Yang
,
L.
,
2009
, “
Infrared Suppression of Submarine Exhaust System
,”
Laser Infrared
,
39
(
4
), pp.
393
396
.
13.
Schleijpen
,
H. M. A.
, and
Neele
,
F. P.
,
2004
,
Targets and Backgrounds X: Characterization and Representation
,
W. R.
Watkins
,
D.
Clement
, and
W. R.
Reynolds
, eds.,
SPIE
,
Bellingham, WA
, p.
5431
.
14.
Mahulikar
,
S. P.
,
Prasad
,
H. S. S.
, and
Potnuru
,
S. K.
,
2008
, “
Infrared Signature Suppression of Helicopter Engine Duct Based on “Conceal and Camouflage”
,”
J. Propul. Power
,
24
(
3
), pp.
613
618
.
15.
Yu
,
K.
,
Cong
,
M.
, and
Dai
,
W.
,
2020
, “
Simulation Analysis of Infrared Radiation Suppression Effect of Solid Particles on Aircraft Exhaust Plume
,”
Acta Opt. Sin.
,
40
(
21
), pp.
191
204
.
16.
Mario
,
T.
,
Roberta
,
V.
,
Flavio
,
M.
, and
Marco
,
P.
,
2009
, “
Composite With a Low Emissivity in the Medium and Far Infrared, and With a Low Reflectivity in the Visible and in the Near Infrared
,” European Patent Office, EP 1323844 A1.
17.
Hodgkinson
,
I.
,
Lowrey
,
S.
,
Bourke
,
L.
,
Parker
,
A.
, and
McCall
,
M. W.
,
2010
, “
Mueller-Matrix Characterization of Beetle Cuticle: Polarized and Unpolarized Reflections From Representative Architectures
,”
Appl. Opt.
,
49
(
24
), p.
4558
.
18.
Phan
,
L.
,
Ordinario
,
D. D.
,
Karshalev
,
E.
,
Walkup IV
,
W. G.
,
Shenk
,
M. A.
, and
Gorodetsky
,
A. A.
,
2015
, “
Infrared Invisibility Stickers Inspired by Cephalopods
,”
J. Mater. Chem. C
,
3
(
25
), pp.
6493
6498
.
19.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
20.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1974
,
Heat Exchanger Design Theory Source Book
,
McGraw-Hill Book Company
,
New York
.
You do not currently have access to this content.